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Abstract  
 
Machine Learning (ML) becomes increasingly popular; industry spends billions of dollars 

building ML systems. Data scientists have come up with many good algorithms and trained 

models. However, putting those ML models into production is still in the early stage. The 

deployment process is distinct from that for traditional software applications; it is not yet well 

understood among data scientists and IT engineers in their roles and responsibilities, resulting in 

many anti-pattern practices [21]. The key issues identified by researchers at Google[40] include 

lack of production-like prototyping stack for data scientists, monolithic programs not fitted for 

component based ML system orchestration, and lack of best practices in system design. To find 

solutions, teams need to understand the inherent structure of ML systems and to find ML 

engineering best practices. This paper presents an abstraction of ML system design process, a 

design pattern named Model-Service-Client + Retraining (MSC/R) consisting of four main 

components: Model (data and trained model), Service (model serving infrastructure), Client (user 

interface), and Retraining (model monitoring and retraining). Data scientists and engineers can 

use this pattern as a discipline in designing and deploying ML pipelines methodically. They can 

separate concerns, modularize ML systems, and work in parallel. This paper also gives case 

studies on how to use MSC/R to quickly and reliably deploy two ML models -- YOLOv3, an 

object detection model, and Stock Prediction using Long Short-Term Memory (LSTM) 

algorithm onto AWS and GCP clouds. Two different implementation approaches are used: 

serving the model as a microservice RESTful API on AWS managed container platform ECS, 

and on GCP serverless platform Cloud Run. In the end, this paper gives analysis and discussion 

on how using the MSC/R design pattern helps to meet the objectives of implementing ML 

production systems and solve the common problems. It also provides insights and 

recommendations. 
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1. Introduction 
 
 
According to the recently updated International Data Corporation (IDC) Worldwide Artificial 

Intelligence Systems Spending Guide, spending on AI systems will reach $97.9 billion in 2023, 

more than two and one half times the $37.5 billion that was spent in 2019. The compound annual 

growth rate (CAGR) for the 2018-2023 forecast period will be 28.4% [1].  However, reports 

show that a majority (up to 87%) of corporate AI initiatives are struggling to move beyond test 

stages [2].  Early evidence suggests that the technology can deliver real value to serious adopters. 

Those organizations that actually put AI and machine learning into production saw a 3-15% 

profit margin increase [3].  

 

Commercial clouds provide Platform as a Service (PaaS) that offer end-to-end services to 

develop, design and run business applications in an agile and scalable environment [4]. This 

ability is good to host ML models to a large number of users and large volumes of data sets. 

However, to effectively navigate and configure the complex cloud services and find the optimum 

deployment architecture remains a challenge. No matter how well the model is, data scientists 

continue to have issues deploying to production often resulting in crippled projects.  

One of the major obstacles preventing businesses from gaining returns on their investment (ROI) 

is that ML infrastructure and operations are different from those designed for traditional software 

applications; they are much more complex and dynamic. As explained in [5], both traditional and 

ML applications perform actions in response to inputs. But the way actions are codified differs 

greatly. Traditional software codifies actions as explicit rules. ML does not codify explicitly. 

Instead rules are indirectly set by capturing patterns from data. As a result, IT teams are ill 

prepared to deploy and operationalize the trained models as usable business applications, and 

data scientists are diverting their talent to sorting out infrastructure and operational issues.  

 

The fact is ML applications introduce a new culture; their deployment and operations require 

new discipline and processes different from the existing DevOps practices [6]. The large 

investment with 87% failure to bring ML applications to production shows companies tried to 

solve the same design problems over and over again at great time and expense.  
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The failed ROI in the industry opened opportunities for finding best practices in the field. The 

concept of MLOps, short for Machine Learning and Operations, was introduced [42] in recent 

years as a new discipline and process of collaboration among data scientists, system engineers 

and business analysts to work together and build ML business applications effectively. The main 

success factors are outlined as follows. 

  

1) Reduced time and difficulty to deploy ML models to production.  

2) Capability to scale up/down horizontally and automatically.  

3) Live model monitoring, tracking and retraining. 

 

To achieve the goals, MLOps need to find solutions to the obstacles standing in the way. After 

analyzing over 100 cases, Google researchers identified three common problems listed below.  

 

● Lack of environment that mirrors production for data scientists.  Data scientists use local 

machine to develop models; the environment is completely different from production 

resulting the need to re-implement from scratch for production  

● Programming style conflict. Data scientists tend to develop models with a monolithic 

program, not following software engineering best practices. 

● System design anti-patterns. Glue code and pipeline jungles, causing integration issues.  

 
The industry is beginning to understand the need for more engineering discipline around ML. 

As Professor Michael Jordan of UC Berkeley stated in his article Artificial Intelligence - The 

revolution Hasn’t Happened Yet, “What we’re missing is an engineering discipline with its 

principles of analysis and design.”[45] 

 

Design patterns have been used as a discipline and best practice for software development for 

many years. As an example, the widely used Model-View-Controller [7] pattern has greatly 

simplified web application development through separation of concerns, code reuse, and 

collaboration to quickly and reliably build and deploy web applications. This paper presents a 

design pattern named Model-Service-Client + Retraining or MSC/R; it’s an abstraction to 
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guide ML system design and operation. MLOps can use this pattern as a discipline to deploy ML 

pipelines to production quickly and effectively. 

 

This thesis contains following contributions: 

● Section 3. Present the design pattern MSC/R. Explain the constructs, and how it can be 

used as guardrails and discipline by MLOps during the process of deploying ML models 

in production.  

● Section 4. Present case study of using this pattern to quickly and reliably deploy two ML 

models, YOLOv3 and Stock Prediction, as RESTful APIs in public cloud AWS and GCP, 

using two implementation approaches: serving the models on AWS docker container 

platform ECS, and on Google Cloud Run serverless platform.   

● Section 5. Give analysis on the use of MSC/R pattern to meet MLOps success objectives, 

discuss how the discipline helps solve those common problems described above. It also 

provides insight and recommendation for the ML system design process. 
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2. Technologies and Related Work 

2.1 Brief Introduction of Machine Learning Models Used 

2.1.1 YOLOv3 Object Detector 
You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system [8]. The 

latest version YOLOv3 published in 2018 is extremely fast and accurate. YOLOv3 uses a single 

neural network to the full image. The network divides the image into regions and predicts an 

objectness score for bounding boxes using logistic regression [9]. Based on YOLO team’s 

experiments, YOLOv3 is 1000x faster than R-CNN and 100x faster than Fast R-CNN [8]. The 

code used in this project is from Zihao Zhang’s GitHub repository [10].  

 

 

 
Figure 2.1 Structure detail of YOLOv3.It uses Darknet-53 as the backbone network.[36] 

2.1.2 Stock Predictor Using Long Short-Term Memory (LSTM)  
Another machine learning model used is a stock prediction model using Long Short-Term 

Memory (LSTM) designed by Dr. Sung Kim [11]. LSTM, first published in 1997, is a Recurrent 

Neural Network (RNN) algorithm designed to avoid the long-term dependency problem in 

standard RNN [12, 13]. A LSTM has the form of a chain of repeating modules of neural 

networks which is very powerful in sequence prediction problems. The details of LSTM are in 

Figure 2.2 and Figure 2.3. In the Figures, Xt is the input, ht is the output, Ct is the cell state,  ft is 

the forget value. 
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Figure 2.2 The repeating module in an LSTM contains four interacting layers [13] 

 
(a) removing information                                                 (b) create an update to the state 

 
      (c)  update the cell state                                                      (d) generate the output   

Figure 2.3 Steps of how LSTM works [13] 

 

 

 

In the case study, historical stock price of Alphabet Inc. (GOOG) [14] is used to train and 

generate the stock prediction model. The model can be used to predict the next day's Close Price 

based on the data from the previous seven days. 

2.2 Brief Introduction of Cloud Technologies  
2.2.1 Amazon Web Services (AWS) 
Amazon Web Service (AWS) is a cloud computing service provided by Amazon. It offers 

reliable, scalable, and inexpensive cloud computing services [15], such as Elastic Cloud 

Computing Service (EC2), Simple Storage Service (S3), etc. With its rich ecosystem, AWS 

allows users to develop, test, deploy, maintain their application without hardware worries.  
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2.2.2 Google Cloud Platform (GCP) 
Google Cloud Platform (GCP) is a cloud computing service provided by Google. It is a suite of 

cloud computing services that runs on the same infrastructure Google uses internally for its end-

user products, such as Google Search, Gmail and YouTube [16]. The services on GCP such as 

Google Computing Engine (GCE), Google Kubernetes Engine (GKE), etc have less 

configurations compared to AWS, making it easy for users to develop and deploy their 

applications. 

 

2.2.3 Other Technologies Used  
Docker  

Docker is an open platform for developing, shipping, and running applications. It provides the 

ability to package and run an application in a loosely isolated environment called a container 

[17]. With container technology, applications can be portable, scalable, and lightweight running 

on different environments.  

 

Kubernetes (K8s)  

Kubernetes is an open-source production-grade container orchestration system for automating 

deployment, scaling, and management of containerized applications [18]. It is now the most 

popular container orchestration platform that provides the functionalities to take care of scaling 

and failover, and make it easy to orchestrate and manage applications.  

 

RESTful API 

REST is an acronym for REpresentational State Transfer. It is an architecture style for 

distributed hypermedia systems and was first presented by Roy Fielding in 2000 in his famous 

dissertation [19]. RESTful APIs are built on this architecture style and work best on the Web. It 

is stateless, lightweight, simple, and fast. In RESTful APIs, resources such as data and 

functionality are accessible using URIs. In industry practices, HTTP GET/PUT/POST/DELETE 

methods are used as the Resource methods in RESTful API. 

 

Serverless Computing 
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Serverless computing is a cloud computing execution model in which the cloud provider runs the 

server, and dynamically manages the allocation of machine resources [20]. With serverless 

computing, users can build and run applications without worrying about commission servers. It 

simplifies the process of deploying applications into production, improves the resource 

utilization, and is high availability and scalability. Serverless computing is cost-efficient, only 

the actual amount of resources used by a service is charged. It is now a hot trend in industry. 

2.3 Related Work  
Deploying Machine Learning service into production is still new. Industry leaders such as 

Google, IBM, AWS, Microsoft spend a lot of resources to do research and try to capture the best 

practices that can be implemented widely. O’Leary and M. Uchida [21] worked with over 100 

participants in industry on their ML pipelines and identified three common problems as: 1) The 

environment for prototyping ML models should be designed to prevent the need to re-implement 

from scratch for production, 2) ML pipelines should provide a framework of pre-defined 

canonical unit of operations as components such that ML code can follow ML engineering best 

practices, as opposed to free-form flexibility, 3) Interfaces between components—both code and 

data—should be made explicit and simple enough so that implementing such interfaces is easy to 

use for ML code authors.  

 

H. Washizaki, H. Uchida, F. Khomh and Y. Guéhéneuc [39] has conducted a study on the use of 

design patterns in ML application development. It concludes that software developers are 

concerned by the complexity of ML systems and their lack of knowledge of the architecture and 

design (anti-)patterns that could help them. The authors identified a list of patterns, such as “ML 

Versioning'', “Daisy Architecture” loosely applied in the process of developing ML pipeline, but 

there remains work to identify design patterns for ML applications. In fact, according to [40], 

ML systems have a special capacity for incurring technical debt, because they have all of the 

maintenance problems of traditional code plus an additional set of ML-specific issues; and it is 

unfortunately common for systems that incorporate machine learning methods to end up with 

many anti-patterns. 
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3. A Design Pattern for Deploying ML Models 

3.1 Concept of Software Design Pattern 
In software engineering, a design pattern is a general repeatable solution to a commonly 

occurring problem in software design. A design pattern isn't a finished design that can be 

transformed directly into code or actions. It is a description or template for how to solve a 

problem that can be used in many different situations [22]. Software architects resort to design 

patterns to summarize best practices that identify principles, abstractions of reusable/repeatable 

paradigms, collaboration approach and guidelines for separation of concerns.  

 

Patterns also provide a language and principles for team collaboration. Effective system design 

requires considering issues that may not become visible until later in the implementation. 

Therefore, in MLOps context engineers can use design patterns to speed up their design and not 

repeat the common mistakes.  

3.2 What is MLOps  
MLOps (a compound of “machine learning” and “operations”) [46] is a new engineering 

practice for collaboration and communication between data scientists and engineers to manage 

production ML system lifecycle. Similar to DevOps, MLOps has two main responsibilities:  

1. Bringing ML applications to production quickly and reliably, and  

2. Ensure ML applications operational 24x7 while meeting all the functional and non-

functional requirements.  

 

Examples of specific tasks include: 

- build ML development and production infrastructure 

- software packaging, orchestration and deployment 

- monitoring, diagnostics and mitigation while ML system in production state 

- performance solutions: availability, scalability, SLAs (service level agreement) 

- build and maintain best practice CI/CD/CT pipeline: continuous integration, continuous 

deploy and continuous training; and so on.  

 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_scientists
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Current MLOps Challenges 
 
Despite the promise of ML and AI technology, more than 80% data science projects never made 

it to production. As [47] stated, it’s not just the right ML models and services that allow you to 

do Machine Learning at scale the way you want to; it’s being able to place them in the right 

secure, operationally performant, fully featured, cost-effective system, with the right access 

controls, that allows you to gain the business results you desire. 

 

The barriers include difficulty to operationalize trained ML models in an enterprise production 

environment. It’s a common issue that data scientists and MLOps engineers have different 

understanding regarding their roles and responsibilities, as well as the boundaries and interfaces 

of pipeline components. The lack of discipline and processes on how teams are expected to 

collaborate resulted in many anti-pattern practices such as “glue code”, “pipeline jungles”, and 

“dead experimental codepath” [40]. 

 

With MLOps, the goal is to make model deployment easy. ML engineers, not data scientists, can 

deploy models written in a variety of modern programming languages like Python and R onto 

modern runtime platforms in the cloud. By adopting best practices and improving collaboration, 

MLOps engineers can help deliver and maintain successful ML solutions in production 

environments.  

3.3 Model-Service-Client + Retraining (MSC/R) - A Design Pattern for 
MLOps 
 

Figure 3.1 below is a graphical view of the proposed design pattern Model-Service-Client + 

Retraining (MSC/R). It has 4 layers (Model, Service, Client, Retraining) and 4 connectors (MS, 

SR, MR and SC). The aim of this pattern is to capture common principles in building production 

environments of a ML system, captures abstraction of reusable/repeatable processes, and 

provides guidelines for separation of concerns.  
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Figure 3.1: the Model-Service-Client + Retraining (MSC/R) design pattern 

 

 

The labels at the top mark team members’ roles, responsibilities and interfaces: data scientists 

with focus on developing and refining models, MLOps engineers with focus on building and 

tuning the runtime infrastructure, frontend engineers with focus on Client development. The 

connectors provide guidelines for collaborations as detailed below under Connectors. With this 

paradigm, members in ML teams can separate responsibilities and improve efficiency by 

working in parallel on non-dependent tasks.  

 

Model 
The Model layer is a Pipeline pattern by itself, used for data preparation and ML model 

generation. In a ML project, it contains the workflow of data scientists: data collection →  data 

cleaning →  feature engineering → model training.  

 

Service 
The Service layer is a Composite pattern; its main purpose is serving ML models and meeting all 

the functional and non-functional system requirements. The subcomponents consist of Front 

Controller, Model-Serving, and Dynamic Infrastructure Platform [43].  
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In Service, MLOps concentrate on building and maintaining the service infrastructure such as 

hosting platforms, scaling mechanism, data collection mechanism, and model-serving functions 

to provide best performance. Overall, it provides the platforms and tools to meet functional 

requirements such as handling client requests, producing responses, and coordinating with 

Model. It also needs to satisfy non-functional requirements such as availability, scalability, 

performance, governance, etc. 

Client 
The Client is a Facade pattern, providing user interface to ML service. The implementation may 

be a web site with user interaction logic, a client to display predictions, API endpoint, mobile 

front end, IoT edge device. It communicates with the Service’s front controller to access ML 

service. 

Retraining 
The Retraining layer is a Composite pattern consisting of an Observer and a Trigger. In the 

Retraining, Data scientists and MLOps engineers work together to determine the performance 

metrics of ML models, and the threshold used to trigger retraining for the next 

generation/version of the model. MLOps engineers create the Observer to monitor the 

performance of the model. Data scientists provide executable retraining code. 

Connector 
A Connector is an Interface Pattern. It defines data exchange and communication protocol 

between two entities; it also defines the collaboration methods between the two roles (owners of 

entities). The contract is negotiated between the roles. There are 4 connectors in MSC/R.  

 

MS Connector: interface between Model and Service. It requires collaboration between data 

scientists and MLOps to define the type and format of artifacts passed from data scientists to 

MLOps for deployment. It also defines the deliverables from MLOps to data scientists, for 

example the development stack, model training pipeline.  

 
MR Connector: interface between Model and Retraining. It requires collaboration between data 

scientists and MLOps to define the rules of how retrained models are to be tested, versioned and 

released.  
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SR Connector: interface between Service and Retraining. It requires collaboration between data 

scientists and MLOps to define the metrics for ML model performance monitoring, retraining 

threshold, and retraining data source and code.  

 

SC Connector:  interface between Service and Client. It requires collaboration between MLOps 

and Client developers to define the type, format and protocol of data exchange between Client 

application and Service entry point.  

 

The Connector pattern is an important construct in the big picture. It is intended to solve the 

overly separated “research” and “engineering” roles by providing discipline for the two teams to 

design contracts between them. Well-designed connectors can reduce anti-patterns such as “glue 

code” and “pipeline jungles” to improve integration and collaboration experience.  

 

3.4 Using MSC/R in ML System Development Process 
 
Similar to software development, ML applications have a development life cycle characterized 

as following 4 stages [47]: Research → Development → Deployment → Production. Details 

about each stage are given below; for this project the major focus is on Development and 

Deployment stages.  

 

MLOps play critical roles in the later 3 stages. MLOps can use MSC/R as guardrails and 

engineering discipline in the development and deployment stages to produce quality work and 

ease the path of bringing ML models to production.    

 

More about the ML development stages 
Research - Data scientists try many approaches and analyses; many options are discarded. 

Typically, data scientists scratch out some code on their laptops.  

Development - Now there are requirements produced as a result of the research stage. Project 

team is assembled that includes data scientists, MLOps and client developers.  
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During this stage, teams collaborate to analyze requirements, design system architecture, identify 

domain tasks and dependencies, and agree on collaboration processes.  

  

Data scientists are typically responsible for the model layer; their work in this stage is illustrated 

in (Figure 3.2): 

 
Figure 3.2 Data Scientists Model Development Phase 

 

Client developers are responsible for developing the front end for users to access the ML model. 

Common front-end clients include web browser, mobile device, IoT devices, or front end 

applications such as business dashboards. There can be other requirements such as synchronous 

or asynchronous response, etc.  

 

MLOps engineers are responsible for building and operationalizing the infrastructure for serving 

models.  

 

In addition to functional requirements, building the production grade infrastructure involves 

many non-functional requirements [48] that include availability, scalability, security, 

governance, automation, etc. Many of the work in these areas can be done in parallel with other 

teams, i.e. while the ML models and client front ends are being developed.  

 

During this stage, many engineering best practices and methodologies should be adopted to 

produce quality results. For instance, teams can apply principles of modularization, separation of 

concerns, and well-defined interfaces between modules. MSC/R serves as a blueprint for MLOps 

to follow best practices.  

 

Figure 3.3 is an example of high-level architecture after requirement analysis in the development 

stage. 



18 

 
Figure 3.3: MSC/R based ML System Architecture  

 

Deployment - ML model is ready to be deployed and tested.  

MLOps is the major player in this stage. Its work includes packaging the code, deploying ML 

models, configuring and tuning the environment, testing, and working with other teams to re-

engineer as needed. Traditionally, this is the point at which many companies struggle [47]. 

 

Following MSC/R in the Development stage, the 3 main issues identified by [21] can be greatly 

reduced or eliminated, thus, to increase success rate in this stage significantly.  

 
Production - While the ML model is in production serving clients, MLOps is responsible for 
operational tasks such as monitoring, performance tuning, continuous integration and testing etc. 
This is not the focus of this project. 
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4. MSC/R Implementation Case Study  
 

The Models  

● YOLOv3 for image detection using COCO dataset [8,10]. The COCO dataset contains 

330K images with 80 categories of objects. 

● Stock Prediction [11] trained with the historical stock price of Alphabet Inc. (GOOG) 

from Aug 18,2004 to May 22,2020 [14] to predict 20-day stock price. The data contains 

Open, High, Low, Volume and Close data. 

 

Implementation Environment 

The implementations are conducted using the free tier services provided by Amazon cloud AWS 

and Google cloud GCP.   

Availability and Load testing are also conducted to demonstrate the reliability, scalability, and 

robustness.   

 

Goal 

Deploy models to serve as RESTful APIs. 

A common best practice of serving ML models is to expose them as RESTful APIs for the 

benefit of platform independence and service evolution. [49]  

 
 

Note: this project uses pretrained models, assuming the research and development work by data 
scientists have been completed beforehand and therefore not included in here. The main focus is 
on MLOps work during development and deployment stages.  
 

4.1 Case-1: ML Service on Amazon Elastic Container Service (ECS) 

4.1.1 Development Process 
Following MSC/R as blueprint, I identify three main tracks of work in this stage  
 
Track-1: Design infrastructure for the Service layer based one functional, non-functional 
requirements 
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Track-2: Design all the connectors that interface with Service 
 

Track-3: Design retraining pipeline 
 
Note: In real world projects at this stage, data scientists focus on the data and training the 
models. MLOps focus on building the infrastructure. They collaborate on the connectors part.  
 

Track-1 

This track is to design system infrastructure required to host and support ML model deployment. 
Most of the work here can be done in parallel with other teams’ work. 

The system component diagram is shown as in Figure 4.1. 
 

        
Figure 4.1: Architecture to deploy ML service using AWS ECS cluster 

 

Hosting service -- ECS provides managed container service.  

Storage -- Amazon S3 bucket is used to store ML artifacts, Elastic Container Registry (ECR) is 

used to store ML container images 

Security -- IAM is used to assign permissions to access AWS services, Security Group is used to 

control inbound and outbound traffic 

Auto Scaling -- Auto Scaling Group manages the auto scaling 

CloudWatch -- AWS CloudWatch is used to monitor the ML infrastructure 

Load Balancing -- Elastic Load Balancer is used to balance network traffic and provides URL  

Front Controller -- RESTful API 
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Configuration 

● ECS 

○ EC2 instances in the cluster are t2.large (2 vCPUs, 8 GiB memory)  

○ ECS task definition using existing container image 

● Security 

○ IAM role with full access to ECS, EC2, ECR, S3 

○ security group with inbound rules on port 80 and 5000 

● Auto scaling  

○  minimum 3 instances, maximum 10 instances 

● Elastic Load Balancing 

○ Round-robin 
 

Reusability and Templatization  

This service infrastructure and configurations can be saved as a template for reuse. In this case 

study, the same infrastructure and configurations are used for both Stock Prediction and 

YOLOv3. The template can be easily customized to fit more complex models. 

 

Track-2  

This track is to design all the 4 connectors that Service interfaces with other layers. This 
requires collaborating and integrating with other teams. The best practices for components to 
integrate is through modularization, well defined interfaces, separation of concerns, and design 
by contracts. [50] 

 
Design MS Connector 
 
The main task is to define the interface with the Model layer. In this case, the standards for the 
ML model code. Typically, the two parties also need to agree on versioning, code repository, 
release processes etc. For this project, I will just use GitHub as a code repository, and use the 
latest version available.  
 

Convert to Microservices 

The Stock Prediction code downloaded is an example of monolithic code that packed data 

access, model black box, and test drivers in one program file. A better approach is to expose the 
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model as a microservice, a paradigm for code reuse and continuous delivery. Therefore, the 

program needs to be separated into functions or microservices to take advantage of container 

technology. 

 

In summary, the connector pattern provides a discipline in the design process: the two teams 

should either define a protocol that code handed over by data scientists are microservice-enabled, 

or have an agreement that MLOps are responsible for the conversion.  

 

Figure 4.2 is the original ML code of Stock Prediction. So I converted the program into separate 

functions or microservices: data input/output - to access S3 bucket (Figure 4.4), model prep - to 

load model/data (Figure 4.5), and API-enablement - to add API methods (Figure 4.6). 
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Figure 4.2 The original code of Stock Prediction [11] 

Containerization 

Containerization allows IT professionals to deploy software packaged as containers across 

environments with little or no modification [51]. In short containers offer the benefits of 

isolation, portability, agility, scalability, and fast deployment. It also raises new challenges; each 

service runs in its own process and communicates with other processes using protocols such as 

HTTP or AMQP.  

 

For this case study, I packaged all 3 microservices into one container and deployed to the cloud. 

This is simple to implement, but it’s not a best practice because the base unit of auto scaling is at 

container level; this means when client calls increase to make prediction, the other two 

microservices and libraries packaged in the same container are also duplicated unnecessarily.  A 

better approach is to put each microservice in a separate container and use HTTP or AMQP to 

exchange parameters between the services. This approach will be implemented in future work.  
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Using microservices adds portability and agility. In this case, the same container template can be 

used for deploying to different clouds. Also, when a new version of the model is available, it can 

be easily deployed with minimum impact of the ML service.  

 

Design SC Connector 

 MLOps works with Client developers to determine the protocol between Front Controller and 

client endpoint. In this case, the ML model is exposed as a RESTful API, the client needs to 

invoke the service by sending HTTP requests and get responses in json file format. For testing 

purposes, I acted as a client developer and wrote a HTML web page where a user can submit a 

request to the REST API and the page then displays the result on the browser.  

 

 In business projects, a client may be a streaming device, MLOps would need to use different 

protocols such as Real-Time Messaging Protocol (RTMP) in Service-Client connector.  

 

Design MR Connector  

This interface between Model and Retraining requires collaboration between data scientists and 

MLOps to define the rules of how retrained models are to be tested, versioned and released. For 

this project with limited resources, I chose to use AWS S3 to store a retrained model. The auto 

deploying script automatically picks up the latest model in the directory.  

In business, when a new version is produced and deposited to GitHub repository, it can trigger 

CI/CD process before the model is deployed to the cloud.  

 

Design SR Connector 

This interface between Service and Retraining requires collaboration between data scientists to 

decide how to initiate retraining, and what parameters to dynamically set at runtime. For 

example, you can change the training data path and get data from different sources.  

For this case study, I used a static data path pointing to an AWS S3 bucket. I used a system 

scheduler as a trigger.  

Track-3 
ML model drift can occur, and a model needs to be retrained when data distribution deviates 

from the original training set, new data is available, or the model performance is degraded. 
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Model monitoring and continuous retraining are critical parts of a ML system. The model needs 

to be automatically retrained in production using fresh data. A typical retraining action is 

triggered by the model performance monitor; AWS CloudWatch and Lambda functions are great 

tools for this implementation.  

 

In this case study, I use a task scheduler, a linux cron job to launch retraining every Monday to 

regenerate a new version of the model on the latest data set stored in an AWS S3 bucket. In 

future work I plan to implement the performance metrics and monitoring scripts and add a data 

input channel to fully automate and complete the pipeline. 

 

4.1.2 Implementation 

Project directory 

GitHub artifacts for the Stock Prediction model & YOLOv3 model are in Figure 4.3.  

 

stock-prediction-api/ 
├── datasets/ 
│   ├── train/ # Datasets used for training 
│   └── test/  # Datasets used for testing 
├── saved_model/ # Directory of trained model 
│   └── my_model/ # trained model 
│       ├── assets/ 
│       ├── variables/ 
│       └── saved_model.pb 
├── api.py  # Script to convert the ML service to RESTful API 
├── data.py   # Script to download & upload objects that stored on cloud 
├── model.py  # Script to train and build ML model 
├── retraining.py  # Script to run the retraining 
└── wsgi.py  # Script of server interface for Python 
 

yolo-api/ 
├── checkpoints/ # Directory of all checkpoints of the Model 
├── data/ # Directory of data 
│   ├── training/ # training data 
│   └── test/ # images used for testing 
├── tools/ # Directory of tool files 
│   ├── export_tfserving.py # Script to export model to tf serving 
│   ├── visualize_dataset.py # Script to visualize data records 
│   └── voc2012.py # Script to test VOC2012 dataset 
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├── yolov3_tf2/ # Directory of help files 
│   ├── __init__.py  
│   ├── bathc_norm.py 
│   ├── dataset.py 
│   ├── models.py 
│   └── utils.py 
├── README.md # Instruction file 
├── api.py  # Script to convert the ML service to RESTful API 
├── convert.py # Script to convert pre-trained YOLO weights into tensorflow format 
├── data.py  # Script to download & upload objects that stored on cloud  
├── detect.py  # Script to detect objects using YOLO model 
├── retraining.py  # Script to run the retraining 
└── wsgi.py  # Script of server interface for Python 
 

Figure 4.3: The RESTful API project directories  

-- Left is Stock prediction, right is YOLO 
 

In the stock-prediction directory, the datasets folder is used to store training and testing datasets. 

The trained model is stored in the saved_model folder. The static folder is to store prediction 

results. All the web pages are under the templates folder. The data.py is used to access objects 

(e.g. data file, model file, etc). The trained model is generated by model.py using the training 

dataset. The api.py is to make the ML service as a RESTful API. To serve the ML model, the 

wsgi.py is used. The retraining.py is used to retrain current ML model and generate a new 

version of ML model. 

 

In the yolo directory, the checkpoints folder stores the pre-trained model. The data folder is used 

to store training and testing datasets. The static folder is to store prediction results. All the web 

pages are under the templates folder. The tools folder stores some tools files such as 

visualize_dataset.py (visualize the data records). The yolov3_tf2 hosts the help files such as 

utils.py. The convert.py is used to convert pre-trained YOLOv3 weights into tensorflow format. 

The data.py is used to access objects. The detect.py is used to test the YOLO model. The api.py 

is used to make the ML service as a RESTful API. The wsgi.py is used to serve the ML model. 
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Code Containerization 

The code artifacts include system runtime and the following customer files: requirements.txt, 

data.py, model.py, service.py and Dockerfile 

 

The data input/output code is in data.py (Figure 4.4), it is used to access S3 buckets.  

import boto3 
## method to get artifacts in a S3 bucket 
# bucketName -- the S3 bucket name 
# fileName -- the local file name 
# s3objectName -- the object name in the S3 bucket 
## 
def getS3object(bucket_name, fileName, s3objectName): 
# create a connection to s3 
s3client = boto3.client('s3') 
# download file from the S3 bucket 
s3client.download_file(bucketName,fileName, s3objectName) 
 
## method to upload an object into a S3 bucket 
# bucketName -- the S3 bucket name 
# fileName -- the local file name 
# s3objectName -- the object name in the S3 bucket 
## 
def uploadS3object(bucketName, fileName, s3objectName): 
s3 = boto3.resource('s3') 
s3.Bucket(bucketName).upload_file(fileName,s3objectName, ExtraArgs={'ACL':'public-read'}) 

Figure 4.4: Functions in data.py  
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model.py loads the pre-trained model (Figure 4.5) 

import matplotlib.pyplot as plt 
import tensorflow as tf 
import numpy as np 
 

# train Parameters 
seq_length = 7 
data_dim = 5 
output_dim = 1 
learning_rate = 0.01 
iterations = 500 
 
def MinMaxScaler(data): 
    numerator = data - np.min(data, 0) 
    denominator = np.max(data, 0) - np.min(data, 0) 
    # noise term prevents the zero division 
    return numerator / (denominator + 1e-7) 
 
# build datasets 
def build_dataset(time_series, seq_length): 
    dataX = [] 
    dataY = [] 
    for i in range(0, len(time_series) - seq_length): 
        x = time_series[i:i + seq_length, :] 
        y = time_series[i + seq_length, [-1]]  # Next close price 
        print(x, "->", y) 
        dataX.append(x) 
        dataY.append(y) 
    return np.array(dataX), np.array(dataY) 
 
def load_model(fileName): 
    new_model = tf.keras.models.load_model(fileName) 
    new_model.summary() 
    return new_model 
 
def load_data(dataName): 
    xy = np.loadtxt(dataName, delimiter=',') 
    train_size = int(len(xy) * 0.0) 
    test_set = xy[train_size - seq_length:]  # Index from [train_size - seq_length] to utilize past sequence 
    test_set = MinMaxScaler(test_set) 
    testX, testY = build_dataset(test_set, seq_length) 
 
    return testX,testY 
 
def test(model,testX,testY,outputName): 
    test_predict = model.predict(testX) 
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    print("--------------------PRINT TEST PREDCIT-------------------- ") 
    #print(test_predict) 
    # Plot predictions 
    plt.plot(testY, label = 'Actual price') 
    plt.plot(test_predict, label = 'Predicted price') 
    plt.title("Alphabet Inc.") 
    plt.xlabel("Week") 
    plt.ylabel("Stock Price ($)") 
    plt.legend() 
    if not os.path.isdir("static"): 
        os.mkdir("static") 
 
    plt.savefig(outputName) 
    plt.show() 

Figure 4.5: load_model() and load_data() functions in model.py 

 

In the api.py, the Flask-RESTful library is used to create RESTful API methods (Figure 4.6).  

import matplotlib.pyplot as plt 
import tensorflow as tf 
import numpy as np 
 
import boto3 
import flask 
from flask_restful import reqparse, Api, Resource 
import io 
import os 
from data import getObject, uploadObject 
from model import MinMaxScaler, build_dataset,load_model,load_data,test 
 
app = flask.Flask(__name__) 
api = Api(app) 
 
# argument parsing 
parser = reqparse.RequestParser() 
parser.add_argument('query', type=str) 
 
class PredictStockPrice(Resource): 
    def get(self): 
        # use parser and find the user's query 
        args = parser.parse_args() 
        user_query = args['query'] 
        file_name = user_query 
        model_path = 'saved_model/my_model' 
        bucket = "elasticbeanstalk-us-west-1-019024743397" 
        getObject(bucket, file_name, file_name) 
        model = load_model(model_path) 
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        dataX,dataY = load_data(file_name) 
        image_name = 'static/test.png' 
        object_name = 'prediction.png' 
        test(model,dataX,dataY,image_name) 
        uploadObject(bucket, image_name, object_name) 
        url = 'http://' + bucket + '.s3.amazonaws.com/' + object_name 
        # format a json file as output 
        output = {'Prediction chart name': url} 
 
        return output 
 
# add API endpoint 
api.add_resource(PredictStockPrice,'/') 
 
if __name__ == '__main__': 
    app.run(host='0.0.0.0', port= 5000) 
 
 
YOLO – api.py  
 
import time 
from absl import flags, logging 
from absl.flags import FLAGS 
import cv2 
import flask 
import numpy as np 
import tensorflow as tf 
import boto3 
from flask_restful import reqparse, Api, Resource 
from yolov3_tf2.models import ( 
    YoloV3, YoloV3Tiny 
) 
from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset 
from yolov3_tf2.utils import draw_outputs 
from data.py import getObject,uploadObject 
 
 
flags.DEFINE_string('classes', './data/coco.names', 'path to classes file') 
flags.DEFINE_string('weights', './checkpoints/yolov3.tf', 
                    'path to weights file') 
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny') 
flags.DEFINE_integer('size', 416, 'resize images to') 
flags.DEFINE_string('image', './data/girl.png', 'path to input image') 
flags.DEFINE_string('tfrecord', None, 'tfrecord instead of image') 
flags.DEFINE_string('output', './static/output.jpg', 'path to output image') 
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model') 
 



31 

def detect(fileName): 
    physical_devices = tf.config.experimental.list_physical_devices('GPU') 
    if len(physical_devices) > 0: 
        tf.config.experimental.set_memory_growth(physical_devices[0], True) 
 
    #if FLAGS.tiny: 
    #    yolo = YoloV3Tiny(classes=FLAGS.num_classes) 
    #else: 
    yolo = YoloV3(classes=80) 
 
    yolo.load_weights('./checkpoints/yolov3.tf').expect_partial() 
    logging.info('weights loaded') 
 
    class_names = [c.strip() for c in open('./data/coco.names').readlines()] 
    logging.info('classes loaded') 
 
    #if FLAGS.tfrecord: 
    #    dataset = load_tfrecord_dataset( 
    #        FLAGS.tfrecord, FLAGS.classes, FLAGS.size) 
    #    dataset = dataset.shuffle(512) 
    #    img_raw, _label = next(iter(dataset.take(1))) 
    #else: 
    img_raw = tf.image.decode_image( 
        open(fileName, 'rb').read(), channels=3) 
 
    img = tf.expand_dims(img_raw, 0) 
    img = transform_images(img, 416) 
 
    t1 = time.time() 
    boxes, scores, classes, nums = yolo(img) 
    t2 = time.time() 
    logging.info('time: {}'.format(t2 - t1)) 
 
    logging.info('detections:') 
    for i in range(nums[0]): 
        logging.info('\t{}, {}, {}'.format(class_names[int(classes[0][i])], 
                                           np.array(scores[0][i]), 
                                           np.array(boxes[0][i]))) 
 
    img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR) 
    img = draw_outputs(img, (boxes, scores, classes, nums), class_names) 
    cv2.imwrite('./static/output.jpg', img) 
    logging.info('output saved to: {}'.format('./static/output.jpg')) 
 
 
app = flask.Flask(__name__) 
api = Api(app) 
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# argument parsing 
parser = reqparse.RequestParser() 
parser.add_argument('query', type=str) 
 
class YOLODetection(Resource): 
    def post(self): 
        args = parser.parse_args() 
        user_query = args['query'] 
        file_name = user_query 
        bucket = "elasticbeanstalk-us-west-1-019024743397" 
        object_name = file_name 
        getObject(bucket, file_name, object_name) 
        detect(file_name) 
        image_name = './static/output.jpg' 
        upload_name = 'yolo/detection.png' 
        url = uploadObject(bucket,image_name,upload_name) 
        output = {'Detection result': url} 
        return output 
 

api.add_resource(YOLODetection,'/') 
 
if __name__ == '__main__': 
    app.run(host='0.0.0.0', port= 5000) 
 

   
Figure 4.6: RESTful API code in api.py 

 

After the ML models are web enabled, MLOps package and dockerize them using the 

reqduirements.txt in Figure 4.7 and Dockerfile in Figure 4.8.  

Stock prediction – requirements.txt 
   
 ## requirements.txt for stock prediction 
 
tensorflow==2.1.0rc1 
numpy==1.17.1 
matplotlib==3.1.1 
Keras==2.3.1 
flask==1.1.1 
gunicorn==20.0.4 
boto3==1.12.40 
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YOLO – requirements.txt 
## requirements file for YOLO 
 
tensorflow==2.1.0rc1 
numpy==1.17.1 
flask==1.1.1 
gunicorn==20.0.4 
boto3==1.12.40 
opencv-python 
lxml 
tqdm 
absl-py 

Figure 4.7: The requirements.txt that list all the required libraries. 

--left is stock prediction, right is YOLOv3 

 

 

 Stock prediction – Dockerfile 
## Dockerfile for stock prediction 
 
# Import a base image 
FROM ubuntu:latest 
MAINTAINER Jay 
 
# Copy all necessary files 
COPY requirements.txt requirements.txt 
COPY saved_model saved_model 
COPY templates templates 
COPY data.py data.py 
COPY service.py service.py 
COPY wsgi.py wsgi.py 
 
# Install dependencies 
RUN apt-get update \ 
  && apt-get install -y python3-pip python3-dev \ 
  && cd /usr/local/bin \ 
  && ln -s /usr/bin/python3 python \ 
  && pip3 install -r requirements.txt 
 
# Start the service 
CMD ["gunicorn","service:app","--bind","0.0.0.0:6001"] 
 
YOLO – Dockerfile 
## Dockerfile for YOLO 
 
# Import a base image 
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FROM ubuntu:latest 
 
ENV DEBIAN_FRONTEND=noninteractive 
 
# Copy all necessary files 
COPY requirements.txt requirements.txt 
COPY checkpoints checkpoints 
COPY yolov3_tf2 yolov3_tf2 
COPY templates templates 
COPY data.py data.py 
COPY detect.py detect.py 
COPY service.py service.py 
COPY wsgi.py wsgi.py 
 
# Install dependencies 
RUN apt-get update \ 
    && apt-get install -y python3-pip python3-dev \ 
    && apt-get install -y libglib2.0-dev libsm6 libxext6 libxrender-dev \ 
    && cd /usr/local/bin \ 
    && ln -s /usr/bin/python3 python \ 
    && pip3 install -r requirements.txt 
 
# Start the service 
CMD ["gunicorn", "service:q:app", "--bind", "0.0.0.0:5000"] 

 
Figure 4.8: The Dockerfile to containerize ML services 

-- Above is Stock Prediction 

 

Deployment Steps 

To build the infrastructure to host the ML model, follow steps on ECS:  

● Push the container image to Amazon ECR 

● Create an IAM role with full access to ECS, EC2, ECR, S3 

● Create a security group with inbound rules on port 80 and 5000 

● Create an ECS cluster, the EC2 instances in the cluster are t2.large (2 vCPUs, 8 GiB 

memory)  

● Configure auto scaling group: minimum 3 instances, desired 3 instances, and maximum 

10 instances. 

● Create an ECS task definition using the container image 

● Test this ECS task definition on single host (EC2 instance) in the cluster 
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● Create an Elastic Load Balancer (ELB) listening on port 80 

● Create an ECS service using the above task definition 

● Wait for the ECS cluster to be launched 

 

Test 

A client HTML page is used for testing as given in Figure 4.9, Figure 4.10 for Stock Prediction 

and YOLOv3 respectively. Following are the URLs for each application. 

 

● Stock prediction service: http://jay-stock-214955919.us-west-1.elb.amazonaws.com  

● YOLO service: http://jay-yolo-820405127.us-west-1.elb.amazonaws.com 
 

Testing Stock Prediction 

The test dataset GOOG.csv, a historical stock price dataset of Alphabet Inc. is used to test the 

Stock prediction service. The test dataset contains 27 days prices, only the last 20 days prices are 

tested. When the Stock Prediction service receives the test data, the trained model uses the first 7 

days prices to predict the price of day 8. Then the price from day 2 to day 8 is used to predict the 

price of day 9. Following this step, the final result is an array of 20 day predicted prices. Next, a 

plot image is generated using the predicted prices array and the actual prices that is the result in 

Figure 4.9. 

     
     Figure 4.9: Access and get prediction from the Stock prediction service on ECS 

http://jay-yolo-820405127.us-west-1.elb.amazonaws.com/
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Testing YOLOv3 

Using the image street.jpg to test the YOLO service. When the test image street.jpg is passed to 

the service, the YOLO model is run to detect objects in the image. Result is in Figure 4.10. It is 

observed that not all the objects such as the streetlamp on the left can be detected. The reason is 

that the COCO dataset only has 80 classes of objects.  

 
           

   
 

Figure 4.10: Access and get result from the YOLO service on ECS   
 

Retraining 

The trigger for retraining the Stock Prediction model is a timer implemented by a Linux cron job 

(Figure 4.11), a task scheduler that can automatically launch the retraining.py in the stock-

prediction directory. 

 

 
# cron job for retraining 
 
0 12 * * 1 /usr/bin/python3 /Users/jayxu/Downloads/project/Stock/retraining.py >> ~/cron.log 
2>&1 

Figure 4.11 cron job to trigger retraining at 12:00 every Monday 

 

In business projects, this component is built by MLOps and data scientists. MLOps engineers 

implement the connector between Service and Retraining.  
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4.2 Case 2: ML Service on Google Cloud Run - a Serverless Platform 

4.2.1 Serverless Platform Overview 
AWS Lambda is a serverless service, but it has limitations on the size of deployment package 

(250 MB, unzipped) and local disk size (512MB) [31], both Stock Prediction and YOLOv3 

models are not suited for AWS Lambda function because of the limitations. 

 

Google Cloud Run is a serverless platform that enables users to run stateless containers 

invocable via HTTP requests. It’s a fully managed, pay-only-for-what-you-use platform that 

automatically scales containers [27]. Unlike Cloud Functions, an event-driven serverless 

platform with max deployment size 100 MB (compressed) / 500 MB (uncompressed)[28, 37], 

Cloud Run is used to build serverless containers with no direct limit for container image size 

[38].   

4.2.2 Development Process 
Following MSC/R as blueprint, the three main tracks of work are the same as the one in 4.1.1  

 

Track-1 

This track is to design system infrastructure required to host and support ML model deployment. 
Most of the work here can be done in parallel with other teams’ work. 

The system component diagram is shown as in Figure 4.11.  
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Figure 4.11: Architecture to deploy ML service on Google Cloud Run 

 

Hosting service -- Google Cloud Run a serverless platform is used  

Storage -- Cloud Storage is used to store ML artifacts, Cloud Container Registry is used to store 

ML container images 

Security -- Cloud IAM is used to set permissions to access Google Cloud services 

Auto Scaling -- Google managed auto scaling service 

CloudWatch -- Google managed Cloud Monitoring is used to monitor the ML infrastructure 

Load Balancing -- Google managed Load Balancer 

 

Configuration 

● Cloud Run: 

○ Resource allocated: 2 vCPUs, 2 GiB memory 

● Security 

○ IAM service account with full access to all GCP services 

● Auto scaling  

○  size: maximum 1000 instances 

● Elastic Load Balancing 

○ Round-robin 
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Track-2 

The design of all the 4 connectors are the same as the described in Section 4.1.1 Track-2. 

 

Track-3 

The retraining design is similar with the one in Section 4.1.1 Track-3. Instead of using AWS 

CloudWatch and Lambda functions, GCP Cloud Monitoring and Cloud functions are used. 

4.2.3 Implementation 

Project directory 

In this case, GitHub artifacts for Stock Prediction & YOLOv3 are the same as given in Section 

4.1.2. 

Code Containerization 

The data access function in data.py needs to be switched to GCP version (Figure 4.12).  

 

from google.cloud import storage 
 
def getCloudobject(certentialName,bucketName,objectName,fileName): 
   client = storage.Client.from_service_account_json(certentialName) 
   bucket = client.get_bucket(bucketName) 
   blob = bucket.get_blob(objectName) 
   blob.download_to_filename(fileName) 
   print("download successful!") 
 
def uploadObject(certentialName,bucketName,objectName,fileName): 
    client = storage.Client.from_service_account_json(certentialName) 
    bucket = client.get_bucket(bucketName) 
    blob = bucket.blob(objectName) 
    blob.upload_from_filename(filename=fileName) 
    url = "http://storage.cloud.google.com/" + bucketName + objectName 
    return url 
 

Figure 4.12: GCP version’s data.py 

 

The model.py and api.py are the same as given in Section 4.1.2. 
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The same container template in Section 4.1.2 can be used to generate the container image for 

Cloud Run.   

Deployment Steps 

● Create the ML service in Cloud Run, in this implementation, specify the capacity of CPU 

allocated to 2, Memory allocated to 2 GiB. 

● Other infrastructures such as Load Balancing, HTTP endpoints, auto scaling are full 

managed by Google 

● Wait for Google Cloud Run launches the service  

Test  

The accessible URL of the ML service can be gotten from Cloud Run → Service details:  

Stock Prediction: https://stock-predict-jay-rakei3ugwq-uc.a.run.app 

YOLO: https://yolo-detection-jay-rakei3ugwq-ue.a.run.app 

The test details for both Stock Prediction and YOLO are similar to the description in Section 

4.1.2. The result of Stock Prediction is in Figure 4.13 and the Result of YOLO is in Figure 4.14 

       
Figure 4.13 Access the stock prediction on Cloud Run via URL  
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Figure 4.14: Access YOLO service on Cloud Run via URL 
 

Retraining 

To retrain the ML model on GCP, the same methods are used as in Section 4.1. 

4.3 Performance Testing 
 
This section tests the performance for 3 different deployment approaches. The metrics for testing 

is availability, scalability, and failover. 

The test evidence below is from testing on the Stock Prediction model only. The test results on 

YOLOv3 models are consistent but not listed here.  

 
Availability  
A Linux test script (Figure 4.15) is scheduled to call Stock Prediction service every hour for 7 

days. The hosting machine logs each access event to system file ***_log.txt. It shows Stock 

Prediction service is 100% available for all 24*7 times.  

# cron job for availability 
 
0 * 1-7 6 * curl http://jay-stock-214955919.us-west-1.elb.amazonaws.com >> 
/Users/jayxu/ecs_log.txt 
0 * 1-7 6 * curl http://34.66.139.13 >> /Users/jayxu/gke_log.txt 
0 * 1-7 6 * curl http://JayStockPrediction-env-1.eba-5u3sjzpp.us-west-1.elasticbeanstalk.com >> 
/Users/jayxu/eb_log.txt 
0 * 1-7 6 * curl http://34.71.117.126 >> /Users/jayxu/ae_log.txt 
0 * 1-7 6 * curl http://stock-predict-jay-rakei3ugwq-uc.a.run.app >> /Users/jayxu/cr_log.txt 
 

Figure 4.15: The Cron-job script to send request every hour for 7 days 
 

http://jay-stock-214955919.us-west-1.elb.amazonaws.com/
http://34.66.139.13/
http://jaystockprediction-env-1.eba-5u3sjzpp.us-west-1.elasticbeanstalk.com/
http://34.71.117.126/
http://stock-predict-jay-rakei3ugwq-uc.a.run.app/
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Load Testing and Autoscaling 
Load test application Locust is used. It is an open source load testing tool that defines user 
behavior with Python code, and swarms the target system with millions of simultaneous users 
[29]. 
 

 
Figure 4.16: Locust interface 

The specs used are: 

Number of users: 10 

Total number of requests: 1,000 (10 users sent requests randomly) 

Intervals between requests: 15 seconds, 1 minute, and 5 minutes. 

Script: locustfile.py 

ML model: Stock prediction service  

Test environment: Run Locust on a MacBook to act as a client outside the cloud. 
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from locust import HttpLocust, TaskSet, task, between 
import time 
 
# create a task to send request to ML service every 5 minutes 
class WebsiteTasks(TaskSet): 
    @task 
    def predict(self): 
       self.client.post("/predict",{'fileName': 'GOOG.csv'}) 
       #wait for 5 minutes 
       time.sleep(300.0) 
 
#configure the user settings in Locust Service 
class WebsiteUser(HttpLocust): 
    task_set = WebsiteTasks 
    wait_time = between(0, 1) 

  
Figure 4.17: locustfile.py for interval  5 minutes  

 

Case Hosting Service Failure rate 

every 15 seconds every 1 minutes every 5 minutes 

Case 1: RESTful API on 

container platform 

RESTful API on AWS 13% 4% 2% 

RESTful API on GCP 12% 4% 3% 

Case 2: Serverless  Google Cloud Run 13% 10% 4% 

Table 4.1 The failures rates of sending total 1000 requests in different time intervals 

 

From the result in Table 4.1, for all implementations, when interval span between requests 

increases, the failure rate goes down.  

 

This can be explained as two possibilities: 

● Cold start latency of new host during auto scaling, due to warm up time. With requests 

frequency increasing, more hosts are being launched. Host launching time is around one 

minutes. 

● Each host can handle 5-8 clients. As requests swarm at the same time, the web server 

gives HTTP 500 error for memory shortage (Figure 4.18). This can possibly be mitigated 
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at application level by counting how many clients each host can serve and adjust the 

cluster size in the beginning.  

 
Figure 4.18 Details of HTTP 500 Error in Cloud Run 

The suggestions are  

● increase number of nodes in the cluster at the start if anticipate large number of 

concurrent requests, and 

● increase auto scaling upper limit.  

 

The conclusion is that through system configuration and tuning, the ML system can be set up to 

support a large number of users and service requests. 

Host Failover 
Host failover is tested by manually terminating a running host. Figure 4.19 and Figure 4.20 

show that both AWS and GCP can detect a terminated instance and spin up a new instance in 

less than 40 seconds.  

 
Figure 4.19: The activity history of auto scaling group in the ECS cluster 

 



45 

 
Figure 4.20: The log history of auto scaling in the GKE cluster 
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5. Results and Discussions 
This section discusses the use of MSC/R design pattern in case studies to methodically design 

complex ML systems quickly and reliably and address the common problems.  

 

5.1 Effectiveness in Aiding ML System Design 
Separation of Concerns 

MSC/R provides good abstraction and insight of ML system structure that help teams to quickly 

identify their tasks, roles and responsibilities.  Each layer clearly marks the center of focus.  

With separation of duties, teams can work in parallel and improve project throughput. For 

example, Data scientists can focus on producing quality models, without worrying about setting 

up the environment, or about the discrepancy between the development and production 

environments. MLOps engineers can quickly build a prototyping stack without waiting for the 

ML model from data scientists. The prototype stack can be evolved into a production replica 

based on the experiment data scientists are doing. At the same time, client developers can 

concentrate on customer use cases. 

 

Design by Contract 

The connectors concept in the MSC/R keeps teams disciplined to define interfaces and 

collaboration protocols. This enhanced quality of design keeps components modular, and greatly 

enhances collaboration.  

 

Reusability  
Through isolation of concerns, design by contract and close collaboration, MLOps are free to 

practice best software engineering practices. For example, container technology has proven to be 

very effective to support distributed computing. MLOps capability to identify infrastructure 

abstraction and create templates greatly improves team’s effectiveness by leveraging the cutting 

edge cloud technology.  
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5.2 Solving common problems 
Problem-1  
Lack of prototype stack mirroring production environment 
With separation of concerns, data scientists can rely on MLOps to build the prototype stack that 
mirrors the production environment. MLOps is the domain experts in IT technology, system 
design and cloud technology. With proper requirements, standing up a ML development 
environment in public clouds in today's world is relatively simple and cost effective. Data 
scientists no longer need to struggle with using personal laptops, trying to piece together 
different tools and utilities to end up with “pipeline jungle.” 
 
Problem-2 
Programming style conflict. Data scientists tend to develop models with a monolithic program, 
not following software engineering best practices. 
The connector components in MSC/R provide guidelines for teams to follow best practice to 
create well defined interface, to design by contract, and to heed modularization. For instance, it 
enforces data scientists to compose code in the form of functions or microservices to be 
compatible with the production ecosystem.  
 
Problem-3  
System design anti-patterns. Glue code and pipeline jungles, causing integration issues.  
Following the discipline of adopting system design best practices, such as separation of 
concerns, design by contract to produce more modularized code. For example, in order to 
leverage container technology, ML code needs to be cleaned to get rid of glue code, and pipeline 
jungles. With close collaboration with MLOps, data scientists and teams can test more often, get 
rid of experimental code and dead code paths, and deal with technical debt and anti-pattern 
practice quickly to reduce integration issues.   
 

5.3 Meeting Success Criteria 
Criteria-1  

Reduced time and difficulty to deploy ML models to production 

The prototyping ML pipelines built in section 4 are relatively simple, they have all the 

components required for the production infrastructure.  With proper upgrades in memory and 

computing power (e.g. using GPUs or TPUs), and changes in configuration the system can be 

converted to production grade in a short time.  
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Criteria-2  

Capability to scale up/down horizontally and automatically.  

The top public clouds such as AWS, GCP and Azure all have very mature mechanisms for  

horizontal scalability. As shown in the case study, auto scaling is seamless and very easy to 

configure.  

 

Criteria-3 

Live model monitoring, tracking and retraining 

All the required technologies, such as AWS CloudWatch, are readily available to implement 

model monitoring. Serverless functions are effective tools for event triggers and event handling.  

The key is collaboration among teams to agree on a design solution. MSC/R also serves as a 

discipline and reminder that this task sits squarely on both teams.  

5.4 Thoughts on using Serverless platform, Fully managed platform 
SageMaker 
For ML systems running fully managed and serverless ML platforms, such as AWS SageMaker, 

and Google CloudRun, there are still separation of concerns and the interfaces among teams as 

described in the Connector pattern. Those platforms provide tools for better pipeline automation 

in production, and shorter development lifecycle, but the work and responsibility remain and 

have to be shared divided among teams.  

 

For example, once a prototype pipeline is configured, AWS SageMaker enables developers and 

data scientists to build and train models using Notebook, and immediately deploy the model for 

integration and testing. Therefore, it enhances the CI-CD-CT process (continuous integration, 

continuous delivery, continuous testing). It comes with cost, for example, the price comparison 

between SageMaker and EC2 is in Table 5.2. The pick-and-choose approach used for this project 

provides a good opportunity to understand how different tools work together. It also provides 

flexibility for MLOps to customize and tune individual components, such as choosing different 

CPU/GPU, data storage on the pipeline and make the pipeline more cost effective.  

 

 
Both AWS and GCP offer serverless options for deploying machine learning models.  
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Pros Cons 

Reduce the workloads and steps Resource Limitation 

Reduce the cost Lock-in to cloud provider, hard to cross platform  

Full managed by cloud provider May lose certain critical insight into their services 

Easy deployments and scalable Latency of warm start 
Table 5.2 Pros and Cons of Serverless 

 

By using serverless, it reduces the workload of infrastructure administration and operation, and 

makes it easy to deploy a service. In AWS Lambda, it only needs 4 steps to deploy a Lambda 

Function. In Google Cloud Run, service can be deployed in only 1 step -- fill basic info and 

launch. It could potentially lower the cost of operations because of the pay-per-execution model. 

It allows developers to focus on application development without worrying management. 

However, the runtime environment is a blackbox. For large and complex systems, it’s difficult to 

gain insight and troubleshoot problems.  

 

Specifically, it also comes with drawbacks:  

● Users may lose certain critical insight into their services, such as stack trace. 

● Current serverless computing platforms have many limits on the computing and storage 

resources. AWS Lambda service has limitations on the deployment package size (250 

MB, unzipped) and local disk size (512MB), that may prohibit it from being used for 

running deep learning algorithms with large models [31]. In fact, both models failed to 

deploy as a Lambda function due to the package size limitation. GCP also has limitations 

on CPU and memory size, in Cloud Functions, it has restrictions such as max deployment 

size 100 MB (compressed) / 500 MB (uncompressed) [37]. Therefore, serverless is not 

suited for heavyweight data processing currently. 

● It totally relies on the cloud-provider's ecosystem, and users are locked into the vendor. 

● Serverless also has the latency issue due to cold starts. As Table 5.1 shows the failure 

rates on GCP Cloud Run are higher compared with non-serverless approaches.  
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5.5 Recommendation (from MSC/R perspective) 
Following the MSC/R pattern, MLOps team can have a clear guideline to plan and deploy 

trained machine learning models.  

 

Below is a list of recommendations based on experience from this project to design and 

implement a ML pipeline in a commercial cloud. 

● Understand and Choose ML models  

Machine learning algorithms classify to two groups: supervised learning and 

unsupervised learning. Under supervised learning there are two common types of models 

based on classification algorithms, e.g. used for image classification, and regression 

algorithms, e.g. used for stock prediction; these models are freely available on GitHub 

and are good candidates to start with. There are several repositories of already trained 

models available in GitHub; a common one is given at [32] 

● Learn and choose ML platforms and libraries, such as TensorFlow, PyTorch, Keras, etc. 

● Knowledge of Cloud Computing Services (from AWS, GCP, AZURE):  Container, 

Scaling, Protocols, etc. 

● Research on what hardware components and spec needed to train the models. Can build 

your own, best to use Cloud service. 

● Prototype  

Python is a popular programming and scripting language for machine learning projects; it 

is commonly used by data scientists, software developers and system engineers. Python 

has a large repository of modules and libraries readily freely available online. For this 

project, it has proven to be very practical for writing front end, mid-tier integration and 

model training code.  
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6. Conclusions and Future Work 

6.1 Conclusions 
Case study shows that by following MSC/R pattern, MLOps can quickly create a pipeline for 

data scientists to use for their prototyping and testing and replicate the pipeline as a template for 

designing large scale environments that mirror production quickly and effectively. 

The tasks can be better organized, and the collaboration is much easier with well-defined 

contracts and interfaces among teams. In the case study, a prototype ML stack can be configured 

and deployed in a matter of a few days in the public cloud. Load testing also shows the auto 

scaling and load balance technology in those clouds are very mature and reliable. The three 

success factors are very achievable if the process is guided by discipline and best practices.  

Leveraging infrastructure as code practice, the prototyping stack can be easily converted into a 

template; by upgrading the specification of certain components such as CPUs and memories, 

cluster size, it can be turned into production grade without huge effort; the template can be used 

to stand up more environment for testing staging with same architecture, significantly reduce the 

portability issue.  

 
 

Using design patterns in software development helps address design complexity and quality. It 

can also adapt to ML service development. In this paper, an abstract Model-Service-Client + 

Retraining (MSC/R) is summarized from existing ML pipeline practices and simply 

implemented using 3 popular approaches. It is quite obvious that with the MSC/R pattern, the 

ML pipeline can be separated of concerns and reusable. This may provide a good suggestion in 

industry practising.  

 

 

6.2 Future Work 
End to End Pipeline Case Study 
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Collaborate with data scientists to conduct case study to create pipeline that start from data 
collection to model serving 
 
More Patterns as Discipline and Best Practice 

To further develop the MSC/R design pattern, more ML application patterns, classifying patterns 

and identifying anti-patterns will be collected. More detailed insight of each component in 

MSC/R and the connectors between them will be developed, such as Data infrastructure that 

produce live training data; Model Serving Infrastructure to differentiate Client requests, such as 

batch or real-time; Security infrastructure that protect the sensitive data and services.  
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8. Appendix 
Artifacts:  

GitHub Repository: https://github.com/jayxu96/Jay-Master-Project 

 

Table 8.1 below lists underlying cloud services used. 

Cloud Service AWS GCP 

Container orchestration Elastic Container Service (ECS) Google Kubernetes Engine (GKE) 

Container Registry  Elastic Container Registry (ECR) Google Container Registry 

Computing  Elastic Cloud Computing Service (EC2) Google Computing Engine (GCE) 

Storage  Simple Storage Service (S3) Google Cloud Storage 

Auto Scaling Auto Scaling Group Auto Scaling 

Load Balancing  Elastic Load Balancer (ELB) Cloud Load Balancing 

Monitoring  CloudWatch Cloud Monitoring 

Application deployment Elastic Beanstalk (EB) Google App Engine (GAE) 

Serverless  Amazon Lambda Function Google Cloud Run 

 

Table 8.1: The Cloud services used in implementations 

 

Software and Libraries Used:  

● Python 3.7 

● Docker 

● AWS CLI: AWS Command Line Interface to manage AWS services 

● Google SDK: Google Cloud Command Line tools to manage GCP services 

● Tensorflow 2.1: an open source machine learning library 

● Numpy: a Python library for scientific computing 

● matplotlib: a comprehensive library for creating static, animated, and interactive 

visualizations in Python [35] 

https://github.com/jayxu96/Jay-Master-Project
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● OpenCV: an open- source library used for real-time computer vision 

● Flask: a light-weight Web Server Gateway Interface web framework in Python 

● Flask-RESTful: an extension of Flask to build REST APIs 

● Gunicorn: a Python Web Server Gateway Interface HTTP server 

● Boto3: an AWS SDK for Python to access various AWS services such as S3, EC2. 
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