CALIFORNIA STATE UNIVERSITY SAN MARCOS

THESIS SIGNATURE PAGE

THESIS SUBMITTED IN PARTIAL FULLFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

MASTER OF ARTS

IN

EDUCATION

THESIS TITLE: The Effects of Direct Decoding Instruction on the Reading
Comprehension of 4th Grade Struggling Readers in a Resource
Services Program (RSP) Setting

AUTHOR: Stephanie Williams

DATE OF SUCCESSFUL DEFENSE: November 30, 2010

THE THESIS HAS BEEN ACCEPTED BY THE THESIS COMMITTEE IN
PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS IN EDUCATION.

Dr. Quiocho
THESIS COMMITTEE CHAIR

Laura Evans
THESIS COMMITTEE MEMBER

THESIS COMMITTEE MEMBER

SIGNATURE DATE

SIGNATURE DATE

SIGNATURE DATE
The Effects of Direct Decoding Instruction on the Reading Comprehension of 4th Grade Struggling Readers in a Resource Services Program (RSP) Setting

Stephanie J. Williams

California State University San Marcos

Fall 2010
Table of Contents

Thesis Abstract Page 3
Chapter One: Introduction Page 4
Chapter Two: Review of Literature Page 10
Chapter Three: Methodology Page 21
Chapter Four: Project Page 30
Chapter Five: Reflection Page 43
References Page 49
THESIS ABSTRACT

Most students learn to read with ease in the general education classroom, responding to the reading curriculum provided. There are, however, a few who struggle and do not progress in their acquisition of basic reading skills: pre-reading skills, word identification, fluency and comprehension. With the changes in state and federal laws in the 1990s, teachers and schools are required to meet the challenge of teaching these students in the least restrictive environment. These students need instruction that is more individualized, multi-sensory, systematic, sequential, repetitive, and intensive to learn to read. This type of instruction is referred to as “direct instruction”. Many direct instruction programs focus on developing reading fluency.

This study looks at the progress made in reading comprehension during the academic year by four students with Individual Education Plans, using a direct instruction reading program, SRA Corrective Reading, Word Attack and Decoding Basics. As a result of the direct instruction program, all four of the students made greater grade equivalent progress in reading comprehension than in previous years.

KEYWORDS: direct instruction, struggling learners, fluency, comprehension
Chapter One

Introduction

Background

I have had the privilege to work with a group of students with learning disabilities who qualify for Resource Specialist services and are below grade level readers. I focused on using direct decoding instruction programs to develop their decoding skills as one of the beginning steps in teaching them to become “active, strong, independent readers who read with understanding” (Allington, 2009, p. vi). Students learn sound-spelling relationships and how to sound out regular and irregular words as they read sentences and then simple stories. As they improve their skills, their fluency increases, but is this enough for them to understand what they are reading?

I used direct instruction programs because these students had not responded to more traditional teaching methods in the general classroom. “Most beginning readers become fluent readers with little explicit fluency instruction, but some beginning readers never seem to get the hang of it” (Allington, 2009 p. 14). Because reading is difficult for these students as they struggle to decode, I hypothesized that as the student’s decoding/fluency skills improve, their reluctance to read would decrease and they would read more both in and outside the classroom.
With the greater volume of reading and practice, this would lead to greater decoding/fluency and comprehension skills.

This study examines how much reading comprehension depends on accurate decoding and the development of automaticity, as opposed to being able to perform complex metacognitive processes involving higher order thinking skills. As Allington (2009) states, “Fluency -- accurate, expressive reading -- is one aspect of reading proficiency and it seems important for reading comprehension” (p. 14).

Statement of the Problem

This study explores the effects of direct decoding instruction on the comprehension of struggling 4th grade readers in a Resource Specialist Program (RSP). The study group consisted of four, 4th grade students, two boys and two girls. All students were identified as having a learning disability and received RSP services reading instruction for 45 minutes a day, four days a week. At the beginning of the study, at the beginning of their 4th grade academic year, each student was assessed to determine their Grade Equivalent reading comprehension level. From this, the yearly average Grade Equivalent progress each student has made in reading comprehension was calculated. Students then participated in a direct instruction decoding reading program for their 4th grade year. At the end of the academic year students were assessed again to determine their Grade Equivalent reading comprehension level. This was compared with their Grade Equivalent reading comprehension level at the beginning of the study, and the year’s progress
was compared with the previous year’s annual average to see if it was greater as a result of the direct decoding instruction program.

Significance of Study

This study increases the greater education community’s understanding of the effectiveness of a direct instruction decoding program on the reading comprehension skills of a group of struggling/reluctant readers in a small group setting. The study enables us to see if it is possible to achieve gains in reading comprehension. As Suder (1991) writes, there are studies that show positive results of direct instruction reading programs but there are few that examine their effectiveness on children with learning disabilities and the results are conflicting. This study helps address that deficiency. Suder (1991) further states that “some students with learning disabilities have underlying information-processing disabilities that limit their success with a direct instruction (or any other) reading program” (p. 124).

The study investigates if the instructional strategies of direct instruction during which the behavior of the teacher and student is predetermined and scripted is successful with students with learning disabilities. We see if the students reading comprehension can be improved because of increased decoding skills brought about with repetition, scaffolding, and small (but systematic) increases in difficulty. The results of the study show if there is a gain from changing the behavior of the
teacher, who loses the opportunity for some autonomy and creativity in exchange for following prescribed instructional strategies.

Summary

Comprehension is the goal of reading. Through the study, the relationship to be examined is whether direct instruction will improve the reading comprehension skills of a group of 4th grade students who have been identified with learning disabilities. The study will look at which direct instruction program -- decoding or comprehension -- will result in the greatest increase in reading comprehension. In the following chapter I review literature on the subject of the effect that direct instruction decoding and comprehension programs have on reading comprehension. There is a question as to how much the reading comprehension of a student with a learning disability is affected by that student’s decoding skills. I look at how much reading fluency and reading comprehension are connected, and explore literature that indicates whether or not direct instruction is the best instructional method for teaching decoding skills to students with a learning disability.

Definition of Terms

Direct instruction. Direct instruction, also known as explicit instruction, can be understood by contrasting it with constructivist or discovery learning. With constructivist methods of learning, students “independently discover what they are to learn and teachers play a limited role in helping with the learning process” (Minskoff 2005 p.18). With direct instruction, “what is to be learned is made clear
to the students and teachers play a dominant role in helping with the learning process” (Minskoff 2005 p.18). There can be confusion because the term “direct instruction”, which describes a teaching method, is often associated with a particular reading program, such as *SRA Corrective Reading* (Engelmann, Hanner, Johnson 1999). This study employs direct instruction strategies using the *SRA Corrective Reading* program. The program is comprehensive, performance based, and systematic. The lessons are scripted and the behavior of the teacher and student is defined. Lessons are carefully designed to cover specific concepts that are practiced enough to be learned. Students progress as they are taught new skills which are then reinforced. The cumulative development is slow and increments small (National Institute for Direct Instruction 2009).

Decoding. The ability to apply one’s knowledge of letter-sound relationships and letter patterns in order to pronounce words correctly. With practice, familiar words are read with automaticity and unfamiliar words are sounded out by converting letters into sounds and then blending the sounds to form recognizable words (Meier 2005).

Comprehension. The ability to understand, make sense of, and get the most out of text being decoded. This involves being purposeful and active, relying on the reader’s knowledge, experience and associations with the text, vocabulary, and language structure. The reader knows when they do not comprehend the text and
will go back and reread it, using different strategies to understand what he is reading (Zipke 2008).
Chapter Two

Review of Literature

Introduction

This study explores the effects of direct decoding instruction on the reading comprehension of 4th grade struggling readers in a Resource Services Program (RSP) setting. In this chapter, a review of the literature on direct instruction, reading decoding and reading comprehension is presented.

Direct Instruction

The U.S. Department of Education (2009) describes the direct instruction approach as, “a scripted presentation that uses brisk pace, carefully chosen exercises and examples, and other presentation techniques” (p.1).

The first direct instruction model was published in 1969 (Hempenstall 2008). It is one of the more than 380 instruction models adopted by the federal initiative Comprehensive School Reform (CSR) program introduced after No Child Left Behind (NCLB) legislation in 2002. It was meant to replace unsuccessful traditional strategies with scientifically research-based practices that change schools through curriculum, instruction and organization (Ross, Nunnery, Goldferber, McDonald, Rachor, Hornbeck, Fleischman 2004). The U.S. Department of Education (2009) found that the direct instruction program Corrective Reading had positive effects on alphabetics and fluency, but no discernable effect on comprehension.
A typical direct instruction lesson is scripted so both student and teacher behaviors are clearly defined. Students respond chorally to a signal given by the teacher. The teacher repeats the prompt until all students have reached a satisfactory level of mastery. Lessons typically last for 45 minutes, and it is recommended that students meet five times a week so that they can retain and practice their new skills and knowledge. This intensity and frequency of instruction is necessary because students who struggle with reading need more practice, more often (Hempenstall 2008).

Direct instruction is highly structured and allows teachers to carefully deliver large amounts of material and practice in less time than more traditional instruction formats and incidental interactions (Engelmann 2003). The efficiency of presentation of materials is particularly important to readers who are struggling and falling behind their peers and reading below grade level. Not only do these students need to catch up, but they need to keep up. This becomes crucial with the “4th grade slump” (Sanacore & Palumbo 2009 p. 1) where it becomes obvious that traditional reading instruction methods are not effective with certain students, and they are now having to read more expository text.

“Struggling learners prove that they are hard to teach because they fail to learn through conventional methods used in general education” (Minskoff 2005 p.xiii). These students may have learning disabilities, attention-deficit/hyperactivity disorder, be English language learners (ELL), have limited English proficiency
(LEP), not speak standard English dialects because of regional or cultural differences, be economically disadvantaged or not live in an environment that supports and encourages learning (Minskoff 2005 p. viii).

Engelmann (2003) states that direct instruction is effective because “all skills are presented in a way that is highly oral so that children become facile at following spoken directions; playing a variety of verbal games, such as rhyming; and using language as an adjunct to thought and reasoning” (p. 79).

Teachers who use direct instruction need extensive training to learn organizational practices that result in efficiency such as grouping students at the same skill level and constantly monitoring progress and acquisition of skills (Engelmann 2003). Direct instruction programs include a placement test that determines the level where a student will start. This way, the material will not be too hard for the student or too easy. The student will also be placed with other students who are performing at the same level (Hempenstall, 2008).

Not only has the effectiveness of direct instruction strategies for teaching students to read by developing their skills in phonemic awareness, phonics and fluency been proven, but these strategies are also effective for teaching students to read by developing skills to learn vocabulary and comprehend text. New words can be taught systematically with multiple exposures to new words, varied instructional activities, word associations, matching words to definitions, and making connections. Explicit instruction of comprehension strategies encourages students
to be actively engaged in their reading and models skills for monitoring their
reading, generating and answering questions, summarizing, activating prior
knowledge and using mental imagery. The modeling demystifies the process, and
the immediate corrective feedback keeps the student moving in the right direction
(Marchand-Martella, McGlocklin, Miller, Martella 2006).

Decoding

Reading is a very complex metacognitive operation with decoding being a
part. Share (1994) uses this umbrella term to define decoding:

"... the class of processes by which speech-based information is derived
from, or activated by, printed letter strings at any point along the
developmental continuum. This class includes, but is not confined to,
application of letter-sound correspondence rules (operating on single or
multi-letter groups in invariant or probabilistic fashion), an analogical
mechanism which synthesizes stored information from orthographically
related words and automatic activation of a distributed network of
connections between orthographic and phonological units" (p. 152).

The decoding strand in the California Department of Education (2009)
English Language Arts (ELA) Content Standards outlines the skills that students are
expected to master at each grade level. The decoding strand follows the “phases of
development in learning to read words by sight” (Ehri 1995). Ehri (1995)
distinguishes four phases: pre-alphabetic, partial alphabetic, full alphabetic and
consolidated alphabetic. The problem is that the school system is set up so that all children are supposed to master skills at the same rate and at risk children do not progress at the same rate as other children (Engelmann 1999). Engelmann (1999) believes Direct Instruction is the best way to help at risk students learn skills and catch up with their peers.

Hempenstall (2008) discussed the difference between synthetic and analytic phonics. Direct instruction uses synthetic phonics. Students are taught in an explicit, clearly defined sequence how to convert letters into sounds and blend the sounds to form recognizable words. Blending and segmenting phonemes is very important. In contrast, analytic phonics focuses on looking at a common phoneme that is introduced with a set of words that contains that same phoneme. Hempenstall (2008) feels that analytic phonics instruction does not provide enough of the systematic practice and feedback that a child who struggles with reading needs to be successful. Direct instruction, with its synthetic phonics approach, does. Further, Hempenstall (2008) states that research shows that the importance of focused instruction of phonemic awareness and the alphabetic principle with “systematic synthetic phonics instruction over more ad hoc, loosely specified phonics approaches is clearly noted” (p. 24).

Reading instruction needs to focus on phonemic awareness, phonics, fluency, vocabulary, and comprehension. It is important that these elements are presented in the right proportions, sequence, and practice. Presentation is optimal,
with practice and feedback to see if students have mastered the skills. The direct instruction model does all this and focuses on a student’s failure to learn as indicative of teacher ineffectiveness, rather than student inability to learn, and provides specific corrective teaching procedures (Hempenstall 2008).

Studies indicate that at-risk students benefit from direct instruction of decoding generally. There are, however, some students that may benefit from other strategies. These include students who do not speak or understand English, or have severe language articulation disorders (Flores, Shippen, Alberto, & Crowe 2004). In their study of the effectiveness of direct instruction on students from 1st through 3rd grade, Ryder, Burton, & Silberg (2006) conclude that the success of a program is as dependent on teacher effectiveness as instructional methods. Further, using direct instruction did not reduce the number of students referred for assessment for special education (Ryder et al 2006). Teachers in the study felt that many of the concepts and vocabulary used in the direct instruction programs favored suburban middle class students and put poor urban students at a disadvantage (Ryder et al 2006).

Duff, Fieldsend, Bowyer-Crane, Hulme, Smith, Gibbs & Snowling (2008) worked with a group of students who had responded poorly to phonological training. They predicted students’ response to intervention by considering skill levels in: rapid naming, problem behavior, phonological awareness, alphabetic principle, memory, demographics (disability, ethnicity, and grade level), and non-
phonological oral language. When vocabulary training was added, they found that students made progress, but still needed ongoing remediation and remained poor readers.

With the current emphasis on decoding and fluency, the question of how much improved fluency increases comprehension has been investigated. In their study, Applegate, Applegate, & Modla (2009) found that highly fluent readers do not always comprehend at the same level. The assumption that fluency increases reading achievement is based on LaBerg and Samuel’s (as cited in Applegate et al. 2009) idea that as less effort is used for decoding this frees up attention to comprehension. Applegate, et al (2009) suggests this is not necessarily true, and that there is a danger in seeing fluency as an end and not a means to “a thoughtful response to text. Instead, we believe that fluency must take its rightful place among many other cognitive processes that affect the quality of comprehension, such as background knowledge, vocabulary, motivation, selective attention, and schemata organization” (p. 519).

Reading Comprehension

Reading comprehension is the ability to understand, make sense of, and get the most out of text being decoded. This involves being purposeful and active, relying on the reader’s knowledge, experience and associations with the text, vocabulary, and language structure. The reader knows when they do not
comprehend the text and will go back and reread it, using different strategies to understand what they are reading (Zipke 2008).

"Children with low reading ability often fail to make the connection between print and its purpose – that is, to convey a meaningful message" (Crowe 2005 p. 40). There is much discussion as to what is the best way to teach students to comprehend what they are reading. California Department of Education (2009) Content Standards outlines comprehension strand skills that should be mastered at each grade level, Kindergarten through 5th grade. There have been various dominant educational “trends of the moment” which include skills management systems of the 1970s, literature-based instruction and authentic texts in the 1990s, and (presently) with No Child Left Behind (NCLB) scientifically-based, reading-research programs with emphasis on phonemic awareness and phonics instruction (Dewitz, Jones, & Leahy 2009). Dewitz et al (2009) confirm that research shows that students should be taught strategies that require controlled and intentional effort until they become skills that are well learned and fluid mental acts to improve comprehension. Teaching models have put too much emphasis on implicit comprehension strategy instruction, rather than ones that are explicit. They look at comprehension strategy instruction in five core reading programs and conclude that there is “little evidence that the use of a core program had any impact on improving the reading achievement of at-risk students” (p. 121). Reasons given for this were that the programs do not provide enough practice for a strategy to be learned,
strategies are wide but not deep, teachers and readers do not understand how a strategy will lead to better comprehension, and that the release-of-responsibility model is not used so readers acquire and internalize strategies (Dewitz et al 2009). Direct Instruction programs attempt to remedy some of these problems.

Nelson & Manset-Williamson (2006) completed a study on the impact of two reading comprehension strategy instruction programs on the reading behaviors of students with reading disabilities. One of the programs used direct instruction techniques and the other was less explicit. The study looked at how many learning disabled students felt out of control of their learning and unable to be successful in reading, thus leading to a loss of motivation, especially in the higher grades when the tasks are more challenging. As the student’s self-efficacy declines, so does his willingness to try new tasks. Any successful reading intervention needs to address not only the student’s reading skills, but his attitude towards being able to control what he learns through using strategies (Nelson et al 2006). The study found that explicit direct instruction did improve student’s self-efficacy as they realized they could control learning through the use of appropriate strategies. This should lead to increased motivation and performance.

Crowe (2005) looks at two oral reading feedback strategies for improving reading comprehension. One is a linear bottom-up approach in which it is assumed that as student decoding skills progress from sound/symbol to whole word to sentence/text, the student’s comprehension of the text will increase. The other is a
top-down, integrated model that encourages the reader to interact with the text to develop an awareness of the purpose and function of the words to give meaning to the message, rather than just rendering an accurate reading. Both groups showed greater improvement than the control group. The integrated model participants retained the information longer and were more engaged in the reading process than the group that focused on improving decoding skills only (Crowe 2005).

Both Bouleware-Gooden, Carreker, Thornhill & Joshi (2007) and Flores & Ganz (2007) found from their studies that direct instruction for teaching metacognitive strategies improved the comprehension of readers with developmental disabilities and reading delays. Teaching students intensively and systematically about statement inference, use of facts, analogies, vocabulary development, and how to summarize with a limited amount of words helped the students to understand the written text.

Summary

This chapter provides a review of literature about direct instruction, decoding, and comprehension. The issues under discussion are not new. Direct instruction (with its structure and control over what is taught and how it is taught) is effective with some students, especially at risk readers who have not responded well to more traditional teaching methods and core reading programs. However, it has limitations and not all readers who struggle respond to this method of instruction. A blended program that includes enrichment activities that motivate students to
become independent readers appears to be the best approach. The effectiveness of the teacher also has to be taken into consideration. Studies have also shown that while there is a correlation between reading fluency and comprehension, reading fluency is one piece of the complex puzzle that is essential for a proficient reader.

The next chapter provides a detailed account of the study to evaluate the effectiveness of direct instruction on the decoding skills and reading comprehension of 4th grade struggling readers in a RSP setting. It is a quantitative study looking at the progress a group of 4th grade students in RSP make during their 4th grade with 45 minutes per day, four days a week, of direct instruction in decoding and how this affects their comprehension.
Chapter Three

Methodology

Introduction

This study explores the effects of direct decoding instruction on the reading comprehension of 4th grade struggling readers in a Resource Services Program (RSP) setting. In this chapter, a review of the design of the research project is presented as well as the setting, including details of the school district, school, and classroom. A description of the participants and materials is provided, along with a week by week account of the procedures of the study. Finally, data analysis is described, with discussion of the limitations of the study.

Design

The study is a quantitative (Fraenkel & Warren 2006) case study of four students who qualify for special education services. Each student was assessed individually in the fall of their 4th grade academic year, to determine their reading comprehension level. During the year, students received 45 minutes of direct instruction using a direct instruction decoding program, SRA Corrective Reading (Engelmann, Hanner, Johnson 1999), four days a week. All four students were assessed again in the spring of their 4th grade year to see how much their comprehension skills improved. Data is presented in the form of a table for each student, illustrating changes in the level of comprehension skills.
Setting

District. The study takes place in a school which is part of large unified school district in Orange County, California. The school district was founded in 1965 and has more than 50,000 students, 4,000 employees and 56 campuses.

Student ethnic composition of this school district is: White 67%, Hispanic 18%, Asian 5%, Filipino 1.5%, African American 1.4%, American Indian/Alaska Native 0.3%, Pacific Islander 0.2%, and Multiple/decline to state 5.8%. Graduation rate of students for this school district is 97.5%, which is higher than County and State averages of 92.2% and 87% respectively. The total per annum expenditure per student for this district is $7,151 (State Average $10,805) (Great Schools 2009).

School. Study participants attend School A1. School A1 has 1,051 students, K–8. The ethnic composition of School A1 is: White 69% (State Average (SA) 29%), Multiple or No Response 11% (SA 3%), Hispanic/Latino 11% (SA 49%), Asian 6% (SA 8%), African American 2% (SA 7%), Filipino 1% (SA 3%), and American Indian or Alaska Native <1% (SA <1%). At this school 2% of students participate in a free or reduced-price lunch program, with the state average being 51%. 3% are English language learners (ELL) in comparison to the state average of 25%. Of these ELL, 71% speak Spanish (SA 85%), 6% Khmer (Cambodian) (SA <1%), 6% Gujarati (SA <1%), 3% Hebrew (SA <1%), 3% German (SA <1%), 3% Farsi (Persian) (SA <1%), 3% All other non-English languages (SA <1%), and 3% Mandarin (Putonghua) (SA<1%) (Great Schools 2009).
Classroom. The classroom is a Resource Services Provider (RSP) room. Students who qualify for special education services are pulled out of the general education classes for intensive intervention to work on goals as per their Individual Education Program (IEP) in a small group setting. The RSP room services approximately 40 qualified students, K-5, 80% White, 12% Hispanic/Latino, and 8% Multiple/No Response. The Resource Specialist (RSP) Teacher has been teaching at AV School for 5 years and has been trained to present the direct instruction *SRA Corrective Reading, Word Attack and Decoding Strategies* ((Engelmann, Hanner, Johnson 1999). The RSP teacher is assisted by an Instructional Assistant (IA) who has been trained to use the *SRA Corrective Reading, Word Attack and Decoding Strategies* programs.

Participants

The study includes four participants. All four students were in the fourth grade, qualify for special education services, and have Individual Education Plans that specify 45 minutes of intensive reading intervention, four times a week in the RSP room.

Student J. Student J is a 9-year-old Hispanic boy who qualified for special education services in 2008 under Speech or Language Impairment because he exhibits a receptive and expressive language disorder that may adversely impacts his academic and social functioning. Student J is a beginning English language
learner whose primary language is Spanish. Teachers observe that Student J can have behavior problems.

Student N. Student N is a 9-year-old Caucasian girl who qualified for special education services in 2009 under Specific Learning Disability because of a deficit in auditory processing. Teachers are concerned with all academics, self confidence and speech.

Student M. Student M is a 9-year-old Caucasian girl who qualified for special education services in 2007 under Specific Learning Disability because of a severe discrepancy between ability and reading skills. Teachers observe that Student M is a hard worker but is two years below grade level in math and reading.

Student K. Student K is a 10 year old boy of Hawaiian/Japanese descent who qualified for special education services in 2007 under Autism because of developmental disability impacting verbal and nonverbal communication and social skills, along with attention issues. Teachers observe that Student K aims to please and works hard but is below grade level in reading fluency, spelling and writing.

Materials

Woodcock Reading Mastery Tests – Revised. The revised, norm based, Woodcock Reading Mastery Tests (WRMT-R) measure several important areas of reading ability (Woodcock 1998). The WRMT-R Form G tests in the areas of reading achievement and reading readiness. Readiness tests measure student Visual-Auditory Learning and Letter Identification. Reading achievement tests are

For the Word Identification test students identify isolated words even if they do not know them or the meaning of the word. The test starts with words that are most common, progressing to words that are read less frequently. The Word Attack test "measures the subject’s ability to apply phonic and structural analysis skills in order to pronounce words with which he or she may be unfamiliar" (Woodcock 1998 p.6). Nonsense words, or words seldom read, are used to create the scenario of the student encountering the word for the first time.

Word Comprehension consists of three subtests – Antonyms, Synonyms, and Analogies – "each measuring the subject’s reading vocabulary at a different level of cognitive processing" (Woodcock 1998 p.6). Antonyms are the simplest, with the student often giving an answer by association that can be exact. For Synonyms, the word must be similar and this is more difficult. On the Analogies subtest, the student must show context-embedded word knowledge by reading and understanding two words, decide what the relationship is between the two words, read a third word and then use this knowledge to supply a word that has a relationship. The Passage Comprehension test requires multiple comprehension
and vocabulary skills as the student reads a short passage with a word missing and then gives the missing word. To do this the student must be able to decode accurately; have knowledge of grammar, syntax, and vocabulary; and be able to use literal and inferential thought processes.

The four WRMS-R test scores (Word Identification, Word Attack, Word Comprehension and Passage Comprehension) are clustered to give a more generalized, valid interpretation of the multifaceted ability to read. The Basic Skills Cluster consists of Word Identification and Word Attack test scores and gives a broader measure of basic reading skills. Word Comprehension and Passage Comprehension test results combine to give the Reading Comprehension Cluster. This cluster combines processing skills used that range from simple (antonyms), to complex (analogies), and vocabularies from general to specialized. Total Reading – Full Scale represents all four reading achievement tests, Word Identification, Word Attack, Word Comprehension, and Passage Comprehension. The score is a good indication of the student’s general reading ability (Woodcock 1998 p.9).

SRA Corrective Reading, Decoding (1999). SRA Corrective Reading, Decoding, is a series of programs: Decoding A – Word-Attack Basics; Decoding B1 and B2 – Decoding Strategies; and Decoding C – Skill Applications (Engelmann, Hanner, Johnson 1999). For this study, Decoding programs A, B1, and B2 were used. Each program has a Teacher’s Presentation Book giving the interactive script the teacher uses to instruct students, Teacher’s Guide giving instructions on teaching
techniques such as signaling for responses, consumable workbooks for the students, and non-consumable student books. Decoding A, Word-Attack Basics is a direct instruction decoding program with 65 lessons that, “teaches nonreaders sound-spelling relationships explicitly and systematically, and shows students how to sound out words” (Engelmann, Hanner, Johnson 1999 p.11) by developing basic reading skills with rhyming, pronunciation, sounding out and word/sentence/story reading. Decoding B1 and B2 teaches “letter and word discrimination, sound and letter combinations, word endings, story reading, literal and inferential comprehension” (Engelmann, Hanner, Johnson 1999 p.12) by emphasizing pronunciation, important letter and word discriminations, accurate word and story reading with comprehension questions.

Procedure and Timeline

Fall 2009 Fall 2009, each of the four students was assessed using the Woodcock Reading Mastery Tests – revised (WRMT-R) (Woodcock 1998) to obtain a performance baseline in Word Identification, Word Attack, Word Comprehension, Passage Comprehension, Basic Skills Cluster, Reading Comprehension Cluster, and Total Reading Cluster.

Fall 2009 to Spring 2010 Students received direct instruction using the SRA Corrective Reading Decoding programs, A, B1, and B2 four times a week, forty-five minutes per session, as per their Individual Education Plans. Students were introduced to the program with explicit instruction on the purpose of the program,
signal and correction procedures. The RSP Teacher or IA have a Teacher Presentation Book with a script for each lesson. The scripted Teacher Presentation book describes what the teacher is to say and do and how students are to respond. Students were given their Word Attack consumable workbooks and completed 65 lessons. These lessons taught letter-sound associations, sounding out words, identifying irregular words, building up from reading words to sentences and finally paragraphs.

Having completed 65 Word Attack lessons, students moved on to level B1, Decoding Strategies. Teacher/IA has a scripted Teacher Presentation Book and students have consumable and non-consumable workbooks. During each of the 65 Decoding B1 lessons students were taught Word Attack skills, participated in group reading, had individual reading checkouts and completed workbook exercises. Students completed Decoding B1 and reached lesson 30 of Decoding B2.

Spring 2010. In Spring 2010, students were again assessed using WRMT-R and the results were compared with the baseline obtained in Fall 2009.

Summary

Chapter Three describes the quantitative study carried out to determine the effects of direct decoding instruction on the reading comprehension of four fourth grade struggling readers in a resource services program setting. The district, school, and classroom setting are described. A brief description of each of the four participants is given. The materials used for the study are described and a timeline
of the procedure recorded. In the next chapter, data collected from the study is analyzed and organized. The final chapter discusses the study and its future use in education.
Chapter Four

Project

Overview

This chapter presents, analyzes and organizes data collected through the study of the effects of direct decoding instruction on the reading comprehension of four fourth grade struggling readers in a resource services program setting. The data is presented in four tables, one for each participant. A description of data is given, with explanation of how data is derived, calculated, and presented.

Analysis of Data

Woodcock Reading Mastery Tests – Revised (1998). Data collected in this assessment is quantitative. “Quantitative data are reported in terms of scores” (Fraenkel, Wallen 2006 p.190). Descriptive statistics are presented in Tables J, K, M, and N to organize and summarize data (Holcomb 1998). Each Table organizes and summarizes WRMT – R assessment data for a student. Data is from Word Identification, Word Attack, Word Comprehension and Passage Comprehension tests. Word Identification and Word Attack test scores are combined to give the Basic Skills Cluster. Word Comprehension and Passage Comprehension test scores are combined to give Reading Comprehension Cluster scores. A Total Reading Cluster score is obtained from combining scores from all four tests, Word Identification, Word Attack, Word Comprehension and Passage Comprehension.
Column one of the table identifies the student and test/cluster names. Column 2 contains each student’s raw score for each test (except Word Comprehension because Word Comprehension is made up of three subtests – Synonyms, Antonyms and Analogies). The raw score is obtained by giving one point for each correct answer and then adding up those points. Each student’s raw score for each test in Fall2009 is recorded, and then the raw score for Spring 2010 so that scores can be compared after using the SRA Corrective Reading program.

Column three of the table shows the derived standard score of the student for each test/cluster, in fall 2009 and spring 2010 after SRA Corrective Reading instruction. This derived score gives an idea of how the student compares with other students in their age group, based on a mean of 100 and a standard deviation of 15. A standard score between 85 and 115 is considered within the normal range.

Column four records derived grade equivalent data for the student for each test/cluster in fall 2009 and spring 2010 after direct decoding instruction using the SRA Corrective Reading program. Column five shows the grade equivalent change for the time period between fall 2009 and spring 2010. Column six shows the student’s annual average grade equivalent change for the four years prior to the study. The point of the study is to see whether the grade equivalent change for the study period, using the SRA Corrective Reading direct instruction program, is greater than the average grade equivalent change before the use of the program.
Table K

<table>
<thead>
<tr>
<th>Test Student</th>
<th>Raw Score</th>
<th>Standard Score</th>
<th>Grade Equivalent</th>
<th>Grade Equiv. Change 2009/2010 Term</th>
<th>Avg. Grade Equiv. Change for 4 terms before study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student K</td>
<td>Fall '09</td>
<td>Fall '09</td>
<td>Fall '09</td>
<td>Fall '09</td>
<td>Spring '10</td>
</tr>
<tr>
<td>Word Ident.</td>
<td>54</td>
<td>86</td>
<td>2.7</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Word Attack</td>
<td>20</td>
<td>93</td>
<td>3.4</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Word Comp.</td>
<td>n/a</td>
<td>88</td>
<td>3.5</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Passage Comp.</td>
<td>34</td>
<td>95</td>
<td>4.1</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Basic Skills Cluster</td>
<td>n/a</td>
<td>88</td>
<td>2.7</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Reading Comp. Cluster</td>
<td>n/a</td>
<td>92</td>
<td>3.7</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Total Reading Cluster</td>
<td>n/a</td>
<td>90</td>
<td>3.2</td>
<td>1.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table K. Table K organizes and summarizes test data for Student K.

Between Fall 2009 and spring 2010, the WRMT-R Word Identification test indicated that Student K’s word identification skills improved with the raw score increasing by 15% from 54 to 62, the standard score improving from 86 to 91, and the grade equivalent score increasing 0.9 from 2.7 to 3.6. This change is greater than the average grade equivalent change for the previous four years, which was 0.7.
Student K’s *Word Attack* raw score increased by 40% from 20 to 28, as the standard score improved from 93 to 98, and the grade equivalent score increased 1.7 from 3.4 to 5.1. This change is greater than the average grade equivalent change for the previous four years, which was 0.9. Student K’s *Word Comprehension* standard score increased from 88 to 99, as the grade equivalent score increased 1.8 from 3.5 to 5.3. This change is greater than the average grade equivalent change for the previous four years, which was 0.9. Student K’s *Passage Comprehension* raw score increased by 8% from 34 to 37, while the standard score increased from 95 to 96, and the grade equivalent score increased 0.6 from 4.1 to 4.7. This change is less than the average grade equivalent change for the previous four years, which was 1.0. Student K’s *Basic Skills Cluster* standard score increased from 88 to 93, and the age equivalent score increased 1.4 from 2.7 to 4.1. This change is greater than the average grade equivalent change for the previous four years, which was 0.7. Student K’s *Reading Comprehension Cluster* standard score improved from 92 to 97, and the grade equivalent score increased 1.3 from 3.7 to 5.0. This change is greater than the average grade equivalent change for the previous four years, which was 0.9. Student K’s *Total Reading Cluster* standard score increased from 90 to 95, and the grade equivalent score increased by 1.3 from 3.2 to 4.5. This change is greater than the average grade equivalent change for the previous four years, which was 0.8.
WRMT-R scores indicate that Student K’s reading comprehension skills improved at a greater rate (grade equivalent 1.3) than in previous years (grade equivalent 0.9) using the SRA Corrective Reading programs A - Word Attack, and B1 and B2 – Decoding Strategies.

Table J

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student J</td>
<td>54</td>
<td>63</td>
<td>93</td>
<td>96</td>
<td>2.7</td>
<td>3.8</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Word Ident.</td>
<td>29</td>
<td>35</td>
<td>104</td>
<td>111</td>
<td>5.5</td>
<td>8.0</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Word Attack</td>
<td>n/a</td>
<td>n/a</td>
<td>90</td>
<td>96</td>
<td>3.0</td>
<td>4.2</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Word Comp.</td>
<td>26</td>
<td>32</td>
<td>90</td>
<td>93</td>
<td>2.7</td>
<td>3.6</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Passage Comp.</td>
<td>n/a</td>
<td>n/a</td>
<td>96</td>
<td>100</td>
<td>3.3</td>
<td>4.8</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Basic Skills Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>96</td>
<td>100</td>
<td>3.3</td>
<td>4.8</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Reading Comp. Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>90</td>
<td>94</td>
<td>2.8</td>
<td>3.9</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Total Reading Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>94</td>
<td>97</td>
<td>3.1</td>
<td>4.3</td>
<td>1.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table J. Table J organizes and summarizes test data for Student J. Between Fall 2009 and Spring 2010, the WRMT-R *Word Identification* test indicated that
Student J’s word identification skills improved with the raw score increasing by 17% from 54 to 63, the standard score improving from 93 to 96, and the grade equivalent score increasing 1.1 from 2.7 to 3.8. This change is greater than the average grade equivalent change for the previous four years, which was 0.7.

Student J’s Word Attack raw score increased by 21% from 29 to 35, while the standard score improved from 104 to 111, and the grade equivalent score increased 2.5 from 5.5 to 8.0. This change is greater than the average grade equivalent change for the previous four years, which was 1.3. Student J’s Word Comprehension standard score increased from 90 to 96, and the grade equivalent score increased 1.2 from 3.0 to 4.2. This change is greater than the average grade equivalent change for the previous four years, which was 0.8. Student J’s Passage Comprehension raw score increased by 23% from 26 to 32, while the standard score increased from 90 to 93, and the grade equivalent score increased 0.9 from 2.7 to 3.6. This change is greater than the average grade equivalent change for the previous four years, which was 0.7. Student J’s Basic Skills Cluster standard score increased from 96 to 100, and the age equivalent score increased 1.5 from 3.3 to 4.8. This change is greater than the average grade equivalent change for the previous four years, which was 0.8. Student J’s Reading Comprehension Cluster standard score improved from 90 to 94, and the grade equivalent score increased 1.1 from 2.8 to 3.9. This change is greater than the average grade equivalent change for the previous four years, which was 0.7. Student J’s Total Reading Cluster standard score increased from 94 to 97, and the
grade equivalent score increased by 1.2 from 3.1 to 4.3. This change is greater than the average grade equivalent change for the previous four years, which was 0.8.

WRMT-R scores indicate that Student J’s reading comprehension skills improved at a greater rate (grade equivalent 1.1) than in previous years (grade equivalent 0.7), using the SRA Corrective Reading programs A - Word Attack, and B1 and B2 – Decoding Strategies.

Table M

<table>
<thead>
<tr>
<th>Test Student</th>
<th>Raw Score</th>
<th>Standard Score</th>
<th>Grade Equivalent</th>
<th>Grade Equiv. Change 2009/2010 Term</th>
<th>Avg. Grade Equiv. Change for 4 terms before study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word Ident.</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>59</td>
<td>89</td>
<td>91</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Word Attack</td>
<td>21</td>
<td>28</td>
<td>95</td>
<td>99</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Word Comp.</td>
<td>n/a</td>
<td>n/a</td>
<td>77</td>
<td>95</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Passage Comp.</td>
<td>26</td>
<td>33</td>
<td>88</td>
<td>94</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Basic Skills Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>90</td>
<td>94</td>
<td>2.7</td>
</tr>
<tr>
<td>Reading Comp. Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>82</td>
<td>94</td>
<td>2.4</td>
</tr>
<tr>
<td>Total Reading Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>88</td>
<td>94</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Table M. Table M organizes and summarizes test data for Student M.

Between Fall 2009 and spring 2010, WRMT-R the Word Identification test indicated that Student M’s word identification skills improved with the raw score increasing by 16% from 51 to 59, the standard score improving from 89 to 91, and the grade equivalent score increasing 0.5 from 2.6 to 3.1. This change is less than the average grade equivalent change for the previous four years, which was 0.7.

Student M’s Word Attack raw score increased by 33% from 21 to 28, while the standard score improved from 95 to 99, and the grade equivalent score increased 1.4 from 3.7 to 5.1. This change is greater than the average grade equivalent change for the previous four years, which was 0.9. Student M’s Word Comprehension standard score increased from 77 to 95, and the grade equivalent score increased 2.1 from 2.2 to 4.3. This change is greater than the average grade equivalent change for the previous four years, which was 0.6.

Student M’s Passage Comprehension raw score increased by 27% from 26 to 33, while the standard score increased from 88 to 94, and the grade equivalent score increased 1.2 from 2.7 to 3.9. This change is greater than the average grade equivalent change for the previous four years, which was 0.7.

Student M’s Basic Skills Cluster standard score increased from 90 to 94, and the age equivalent score increased 1.1 from 2.7 to 3.8. This change is greater than the average grade equivalent change for the previous four years, which was 0.7.

Student M’s Reading Comprehension Cluster standard score improved from 82 to 94, and the grade equivalent score increased 1.7 from 2.4 to 4.1. This change is
greater than the average grade equivalent change for the previous four years, which was 0.6. Student M’s Total Reading Cluster standard score increased from 88 to 94, and the grade equivalent score increased by 1.3 from 2.6 to 3.9. This change is greater than the average grade equivalent change for the previous four years, which was 0.7.

WRMT-R scores indicate that Student M’s reading comprehension skills improved at a greater rate (grade equivalent 1.7) than in previous years (grade equivalent 0.6) using the SRA Corrective Reading programs A - Word Attack, and B1 and B2 – Decoding Strategies.

Table N

<table>
<thead>
<tr>
<th>Test Student</th>
<th>Raw Score</th>
<th>Standard Score</th>
<th>Grade Equivalent</th>
<th>Grade Equiv. Change 2009/2010 Term</th>
<th>Avg. Grade Equiv. Change for 4 terms before study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student N</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td></td>
</tr>
<tr>
<td>Word Ident.</td>
<td>40</td>
<td>56</td>
<td>87</td>
<td>94</td>
<td>2.2</td>
</tr>
<tr>
<td>Word Attack</td>
<td>21</td>
<td>31</td>
<td>97</td>
<td>106</td>
<td>3.7</td>
</tr>
<tr>
<td>Word Comp.</td>
<td>n/a</td>
<td>n/a</td>
<td>92</td>
<td>89</td>
<td>2.8</td>
</tr>
<tr>
<td>Passage Comp.</td>
<td>22</td>
<td>36</td>
<td>89</td>
<td>101</td>
<td>2.2</td>
</tr>
<tr>
<td>Basic Skills Cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>89</td>
<td>97</td>
<td>2.3</td>
</tr>
<tr>
<td>Reading</td>
<td>n/a</td>
<td>n/a</td>
<td>90</td>
<td>95</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Between Fall 2009 and Spring 2010, WRMT-R *Word Identification* test indicate that Student N’s word identification skills improved with the raw score increasing by 40% from 40 to 56, the standard score improving from 87 to 94, and the grade equivalent score increasing 0.6 from 2.2 to 2.8. This change is the same as the average grade equivalent change for the previous four years, which was 0.6.

Student N’s *Word Attack* raw score increased by 48% from 21 to 31, while the standard score improved from 97 to 106, and the grade equivalent score increased 2.5 from 3.7 to 6.2. This change is greater than the average grade equivalent change for the previous four years, which was 0.9. Student N’s *Word Comprehension* standard score decreased from 92 to 89, and the grade equivalent score increased 0.2 from 2.8 to 3.0. This change is smaller than the average grade equivalent change for the previous four years, which was 0.7. Student N’s *Passage Comprehension* raw score increased by 64% from 22 to 36, while the standard score increased from 89 to 101, and the grade equivalent score increased 2.2 from 2.2 to 4.4. This change is greater than the average grade equivalent change for the previous four years, which was 0.6. Student N’s *Basic Skills Cluster* standard score increased from 89 to 97, and the age equivalent score increased 1.5 from 2.3 to 3.8. This change is greater
than the average grade equivalent change for the previous four years, which was 0.6.

Student N’s *Reading Comprehension Cluster* standard score improved from 90 to 95, and the grade equivalent score increased 1.1 from 2.5 to 3.6. This change is greater than the average grade equivalent change for the previous four years, which was 0.6. Student N’s *Total Reading Cluster* standard score increased from 90 to 97, and the grade equivalent score increased by 1.2 from 2.4 to 3.6. This change is greater than the average grade equivalent change for the previous four years, which was 0.6.

WRMT-R scores indicate that Student M’s reading comprehension skills improved at a greater rate (grade equivalent 1.2) than in previous years (grade equivalent 0.6), using the *SRA Corrective Reading* programs A - *Word Attack*, and *B1 and B2 – Decoding Strategies*.

Summary

Chapter Four outlines the analysis of data collected in the research project that examines the effects of direct decoding instruction on the reading comprehension of 4th grade struggling readers in a RSP setting. The study involves a case study of four 4th grade students from a large school district in California. These students attend a K – 8 school in Orange County, CA. The students qualify for special education services through the qualifying conditions of Speech and Language Disability, Specific Learning Disability and Autism.
The study is quantitative with data for each student gathered from pre-testing and post-testing for reading comprehension. This data measures the progress the students have made after participating in a direct instruction reading program, *SRA Corrective Reading*, from Fall 2009 to Spring 2010. The progress each student made in their reading comprehension as a result of the decoding instruction is presented for Student K in Table K, Student J in Table J, Student M in Table M, and Student N in Table N.

Table S

<table>
<thead>
<tr>
<th>Test Student</th>
<th>Raw Score</th>
<th>Standard Score</th>
<th>Grade Equivalent</th>
<th>Grade Equiv. Change 2009/2010 Term</th>
<th>Avg. Grade Equiv. Change for 4 Terms Before Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Comp. Cluster</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td>Fall 2009</td>
<td>Spring 2010</td>
<td>Fall 2009</td>
</tr>
<tr>
<td>Student K</td>
<td>n/a</td>
<td>92</td>
<td>97</td>
<td>3.7</td>
<td>5.0</td>
</tr>
<tr>
<td>Student J</td>
<td>n/a</td>
<td>90</td>
<td>94</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Student N</td>
<td>n/a</td>
<td>90</td>
<td>95</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Student M</td>
<td>n/a</td>
<td>82</td>
<td>94</td>
<td>2.4</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Assessment results for the *Reading Comprehension Cluster* for all four study participants is presented and compared in Table S. All participants made more than one year grade equivalent increase in *Reading Comprehension Cluster*. Each participant made greater progress during the academic year 2009/2010 when
compared with the average annual grade equivalent change for the four years (K – 3rd Grade) before the study. The progress made in reading comprehension by the study participants, when direct instruction using the *SRA Corrective Reading Word Attack and Decoding Strategies* program was provided, was greater than in previous years.
Chapter Five

Overview

Chapter Five summarizes the study results from using a direct instruction decoding instruction program to teach struggling 4th grade readers reading comprehension in a resource services pullout program. The limitations of the study are examined, as well as the implications. Future plans and recommendations for more research are discussed.

Project Results

I was greatly encouraged by the progress each of the four participants made in their reading comprehension after using the direct instruction *SRA Corrective Reading, Word Attack and Decoding Strategy* program for a year. All participants made more than a one year grade equivalency gain, as can be seen in Table S. It is satisfying to find that focusing on decoding and reading fluency can have a significant impact on reading comprehension. All the participants qualified for special education services, but they qualified under different conditions. Yet direct instruction resulted in all participants making significant progress in reading comprehension.

Limitations

There are several limitations to this study. One of the limitations is the small number of participants. There is also no control group with which to compare the
study group in order to see the kind of progress students would have made with more traditional methods of instruction. The setting is not clinical and controlled. It is authentic. Therefore, it is not possible to follow any direct instruction program with 100% fidelity. Every instructor is different with their own strengths and weaknesses. Every participant comes to the program with their own individual frame of reference, and they are affected by outside influences such as health issues, difficulties at home, and varying amounts of support for learning outside the classroom. Group dynamics can be different for various groups and can impact behavior and learning. The difficulty of assessing reading comprehension is also a limitation. Reading comprehension is a complex meta-cognitive process that is difficult to quantify. It is difficult to find an instrument sensitive enough to measure progress made by the students. Assessment results represent a moment in time. It is difficult to quantify whether reading comprehension skills gained in the resource room will transfer into the general education classroom.

Future Plans

I will continue to use direct instruction reading programs in my resource room. Using a direct decoding instruction program as a teaching tool in an authentic teaching environment validates the usefulness of the program. The students made progress in reading comprehension, as shown by assessment results, and focusing on decoding with struggling readers should continue to lead to increased fluency and comprehension. The program has different levels, and the
next level addresses the needs of higher grade students by focusing on expository text and vocabulary.

No one program or instruction method is perfect, but this type of program helps me provide an effective service for my students. My students are included in the general education classroom and come to the resource room for varying periods of time every day, as determined by their Individual Education Plans. This means there is a relatively brief time in which to provide the intensive, direct instruction that they need to be successful in the classroom. I have students from kindergarten through 5th grade on my caseload and cannot plan lessons for all of them every day. Using direct instruction programs that are research based and designed by professionals with deep knowledge of reading difficulties means that my students will get more of the instruction they need. The students like the program and have been positive about participating in it. They know what is expected of them and they are confident that they can do it. Instruction time is used more efficiently when the students become familiar with the program routine. They know the routine and that I am going to start as soon as one or two students arrive, and this leads to a smooth transition into the resource room.

As a new teacher using the direct instruction decoding program, I learned a great deal about reading and teaching reading, and became a better, more confident teacher. I am also able to utilize my instructional assistants more effectively. My instructional assistants are enthusiastic about the program because the scripted
teacher manuals make their tasks in a given lesson very clear. This allows my resource program to run smoothly whether I am there or not, and for the students to keep learning. This resource efficiency is invaluable, since we cannot afford to waste any time teaching students who are already behind.

My goal is to encourage students to use the *Accelerated Reader* program, alongside my direct instruction program. While direct reading instruction programs are effective in helping struggling readers improve their reading comprehension, they are no substitute for reading and enjoying an actual book. I am hoping that as my students become more proficient, more confident readers they will enjoy reading books and become self-motivated.

Recommendations

Direct instruction decoding programs are not ideal for all students. I would only recommend direct instruction decoding programs for the small percentage of students who struggle to learn to read because they have: a specific learning disability, such as dyslexia or attention-deficit/hyperactivity disorder; or some other factor, such as being an English language learner, that makes learning more difficult for them. Within this group I would narrow it down further to students that struggle with letter/sound associations. Less intensive intervention measures to develop reading fluency may be more effective for other students.

I would also recommend implementing a program such as *Accelerated Reader*, so that students can choose their own books and read outside the resource
room. *Accelerated Reader* is a general education classroom program, but I find my students are often reluctant to participate because when their class goes to the library to get their books they are embarrassed at the level of book they have to choose. I am developing my own library of high interest/low reading level books in the resource room and encouraging students to read the books and take the test on the computer in the resource room.

Conclusion

This study introduced the reader to features of direct instruction that lead to all the participants making significant progress in reading comprehension. These features include the instruction being systematic, incremental, targeted, and research based. The scripted, interactive nature of the instruction results in students focusing on the skills being modeled and taught because they have to respond – the teacher is listening for each student’s response to every interaction. Students are not only shown basic reading skills. They are taught them and practice them, with reduced scaffolding until the student can apply the skill independently in a variety of circumstances. The independent workbook exercises are geared for student success and reinforce what is being taught. Students feel comfortable with the structure and expectations of lessons. They know exactly what is expected of them and they are taught how to master each skill. Behavior problems are reduced, which means less time is wasted dealing with them. Lessons repeat instruction of skills until students internalize them. This is useful for struggling readers who may have memory and
processing deficits. As struggling learners grow comfortable with the program, they come to appreciate learning to read in the RSP room. All of the students in the study had a successful year in their 4th grade general education classroom.

The students in the study were weak in different areas of reading skills. For example, Student K’s comprehension skills were strong relative to decoding skills; Student J’s decoding skills were strong relative to comprehension skills; and student N was weak in both decoding and comprehension skills. However, all students made significant progress using the SRA Corrective Reading direct instruction Word Attack and Decoding Strategies program. Despite their improvement, only one student, Student K, reached beginning 5th grade equivalent at the end of the 4th grade year. Minskoff (2007) says:

“... reading comprehension skills are broad and ever-changing. They involve understanding all words and sentence types in printed material, mastery of higher order thinking processes necessary for understanding all types of reading material, and strategies for understanding the organization of different types of text structures. Consequently, there needs to be a constantly changing focus on reading comprehension disabilities until adult competency is reached” (p.135).
References

